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Stochastic Integration

We next give a rather rapid account of stochastic integration in a form
suitable for application to Lévy processes.
Let X = M + C be a semimartingale. The problem of stochastic
integration is to make sense of objects of the form∫ t

0
F (s)dX (s) :=

∫ t

0
F (s)dM(s) +

∫ t

0
F (s)dC(s).

The second integral can be well-defined using the usual
Lebesgue-Stieltjes approach. The first one cannot - indeed if M is a
continuous martingale of finite variation, then M is a.s. constant.
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Refer to the martingale part of the Lévy-Itô decomposition. Define a
“martingale-valued measure” by

M(t ,E) = B(t)δ0(E) + Ñ(t ,E − {0}),

for E ∈ B(Rd ), where B = (B(t), t ≥ 0) is a one-dimensional Brownian
motion. The following key properties then hold:-

M((s, t ],E) = M(t ,E)−M(s,E) is independent of Fs, for
0 ≤ s < t <∞.
E(M((s, t ],E)) = 0.
E(M((s, t ],E)2) = ρ((s, t ],E)
where ρ((s, t ],E) = (t − s)(δ0(E) + ν(E − {0})).
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We’re going to unify the usual stochastic integral with the Poisson
integral, by defining:∫ t

0

∫
E

F (s, x)M(ds,dx) :=

∫ t

0
G(s)dB(s) +

∫ t

0

∫
E−{0}

F (s, x)Ñ(ds,dx).

where G(s) = F (s,0). Of course, we need some conditions on the
class of integrands:-
Fix E ∈ B(Rd ) and 0 < T <∞ and let P denote the smallest σ-algebra
with respect to which all mappings F : [0,T ]×E ×Ω→ R satisfying (1)
and (2) below are measurable.

1 For each 0 ≤ t ≤ T , the mapping (x , ω)→ F (t , x , ω) is B(E)⊗Ft
measurable,

2 For each x ∈ E , ω ∈ Ω, the mapping t → F (t , x , ω) is left
continuous.
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We call P the predictable σ-algebra. A P-measurable mapping
G : [0,T ]× E × Ω→ R is then said to be predictable. The definition
clearly extends naturally to the case where [0,T ] is replaced by R+.
Note that by (1), if G is predictable then the process t → G(t , x , ·) is
adapted, for each x ∈ E . If G satisfies (1) and is left continuous then it
is clearly predictable.
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Define H2(T ,E) to be the linear space of all equivalence classes of
mappings F : [0,T ]× E × Ω→ R which coincide almost everywhere
with respect to ρ× P and which satisfy the following conditions:

F is predictable,∫ T

0

∫
E
E(|F (t , x)|2)ρ(dt ,dx) <∞.

It can be shown that H2(T ,E) is a real Hilbert space with respect to
the inner product < F ,G >T ,ρ=

∫ T
0

∫
E E((F (t , x),G(t , x)))ρ(dt ,dx).
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Define S(T ,E) to be the linear space of all simple processes in
H2(T ,E),where F is simple if for some m,n ∈ N, there exists
0 ≤ t1 ≤ t2 ≤ · · · ≤ tm+1 = T and there exists a family of disjoint Borel
subsets A1,A2, . . . ,An of E with each ν(Ai) <∞ such that

F =
m∑

j=1

n∑
k=1

Fj,k1(tj ,tj+1]1Ak ,

where each Fj,k is a bounded Ftj -measurable random variable. Note
that F is left continuous and B(E)⊗Ft measurable, hence it is
predictable. An important fact is that

S(T ,E) is dense in H2(T ,E),
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One of Itô’s greatest achievements was the definition of the stochastic
integral IT (F ), for F simple, by separating the “past” from the “future”
within the Riemann sum:-

IT (F ) =
m∑

j=1

n∑
k=1

Fj,kM((tj , tj+1],Ak ), (0.1)

so on each time interval [tj , tj+1], Fj,k encapsulates information
obtained by time tj , while M gives the innovation into the future (tj , tj+1].
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Lemma

For each T ≥ 0,F ∈ S(T ,E),

E(IT (F )) = 0, E(IT (F )2) =

∫ T

0

∫
E
E(|F (t , x)|2)ρ(dt ,dx).

Proof. E(IT (F )) = 0 is a straightforward application of linearity and
independence. The second result is quite messy - we lose nothing
important by just looking at the Brownian case, with d = 1.
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So let F (t) :=
∑m

j=1 Fj1(tj ,tj+1], then IT (F ) =
∑m

j=1 Fj(B(tj+1)− B(tj)),

IT (F )2 =
m∑

j=1

m∑
p=1

FjFp(B(tj+1)− B(tj))(B(tp+1)− B(tp)).

Now fix j and split the second sum into three pieces - corresponding to
p < j ,p = j and p > j .
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When p < j ,FjFp(B(tp+1)− B(tp)) ∈ Ftj which is independent of
B(tj+1)− B(tj),

E[FjFp(B(tj+1)− B(tj))(B(tp+1)− B(tp))]

= E[FjFp(B(tp+1)− B(tp))]E(B(tj+1)− B(tj)) = 0.

Exactly the same argument works when p > j .
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What remains is the case p = j , and by independence again

E(IT (F )2) =
m∑

j=1

E(F 2
j )E(B(tj+1)− B(tj))2

=
m∑

j=1

E(F 2
j )(tj+1 − tj). 2

We deduce from Lemma 1 that IT is a linear isometry from S(T ,E) into
L2(Ω,F ,P),and hence it extends to an isometric embedding of the
whole of H2(T ,E) into L2(Ω,F ,P). We continue to denote this
extension as IT and we call IT (F ) the (Itô) stochastic integral of
F ∈ H2(T ,E). When convenient, we will use the Leibniz notation
IT (F ) :=

∫ T
0

∫
E F (t , x)M(dt ,dx).
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So for predictable F satisfying
∫ T

0

∫
E E(|F (s, x)|2)ρ(ds,dx) <∞, we

can find a sequence (Fn,n ∈ N) of simple processes such that∫ T

0

∫
E

F (t , x)M(dt ,dx) = lim
n→∞

∫ T

0

∫
E

Fn(t , x)M(dt ,dx).

The limit is taken in the L2-sense and is independent of the choice of
approximating sequence.
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The following theorem summarises some useful properties of the
stochastic integral.

Theorem

If F ,G ∈ H2(T ,E) and α, β ∈ R, then :
1 IT (αF + βG) = αIT (F ) + βIT (G).

2 E(IT (F )) = 0, E(IT (F )2) =
∫ T

0

∫
E E(|F (t , x)|2)ρ(dt ,dx).

3 (It (F ), t ≥ 0) is Ft -adapted.
4 (It (F ), t ≥ 0) is a square-integrable martingale.
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Proof. (1) and (2) are easy.
For (3), let (Fn,n ∈ N) be a sequence in S(T ,E) converging to F ; then
each process (It (Fn), t ≥ 0) is clearly adapted. Since each
It (Fn)→ It (F ) in L2 as n→∞, we can find a subsequence
(Fnk ,nk ∈ N) such that It (Fnk )→ It (F ) a.s. as nk →∞, and the
required result follows.
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(4) Let F ∈ S(T ,E) and (without loss of generality) choose
0 < s = tl < tl+1 < t . Then it is easy to see that It (F ) = Is(F ) + Is,t (F )
and hence Es(It (F )) = Is(F ) + Es(Is,t (F )) by (3). However,

Es(Is,t (F )) = Es

 m∑
j=l+1

n∑
k=1

Fj,kM((tj , tj+1],Ak )


=

n∑
j=l+1

n∑
k=1

Es(Fj,k )E(M((tj , tj+1],Ak )) = 0.

The result now follows by the continuity of Es in L2. Indeed, let
(Fn,n ∈ N) be a sequence in S(T ,E) converging to F ; then we have

||Es(It (F ))− Es(It (Fn))||2 ≤ ||It (F )− It (Fn)||2
= ||F − Fn||T ,ρ → 0 as n→∞. 2
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We can extend the stochastic integral IT (F ) to integrands in
P2(T ,E).This is the linear space of all equivalence classes of
mappings F : [0,T ]× E × Ω→ R which coincide almost everywhere
with respect to ρ× P, and which satisfy the following conditions:

F is predictable.

P
(∫ T

0

∫
E |F (t , x)|2ρ(dt ,dx) <∞

)
= 1.

If F ∈ P2(T ,E), (It (F ), t ≥ 0) is always a local martingale, but not
necessarily a martingale.
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Poisson Stochastic Integrals

Let A be an arbitrary Borel set in Rd − {0} which is bounded below,
and introduce the compound Poisson process P = (P(t), t ≥ 0), where
each P(t) =

∫
A xN(t ,dx). Let K be a predictable mapping, then

generalising the earlier Poisson integrals, we define∫ T

0

∫
A

K (t , x)N(dt ,dx) =
∑

0≤u≤T

K (u,∆P(u))1A(∆P(u)), (0.2)

as a random finite sum.
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In particular, if H satisfies the square-integrability condition given
above, we may then define, for each 1 ≤ i ≤ d ,∫ T

0

∫
A

H i(t , x)Ñ(dt ,dx)

:=

∫ T

0

∫
A

H i(t , x)N(dt ,dx)−
∫ T

0

∫
A

H i(t , x)ν(dx)dt .

The definition (0.2) can, in principle, be used to define stochastic
integrals for a more general class of integrands than we have been
considering. For simplicity, let N = (N(t), t ≥ 0) be a Poisson process
of intensity 1 and let f : R→ R, then we may define∫ t

0
f (N(s))dN(s) =

∑
0≤s≤t

f (N(s−) + ∆N(s))∆N(s).
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Lévy-type stochastic integrals

We take E = B̂ − {0} = {x ∈ Rd ; 0 < |x | < 1} throughout this
subsection. We say that an Rd -valued stochastic process
Y = (Y (t), t ≥ 0) is a Lévy-type stochastic integral if it can be written
in the following form for each 1 ≤ i ≤ d , t ≥ 0,

Y i(t) = Y i(0) +

∫ t

0
Gi(s)ds +

∫ t

0
F i

j (s)dBj(s)

+

∫ t

0

∫
|x |<1

H i(s, x)Ñ(ds,dx) +

∫ t

0

∫
|x |≥1

K i(s, x)N(ds,dx),

where for each
1 ≤ i ≤ d ,1 ≤ j ≤ m, t ≥ 0, |Gi |

1
2 ,F i

j ∈ P2(T ),H i ∈ P2(T ,E) and K is
predictable. B is an m-dimensional standard Brownian motion and N is
an independent Poisson random measure on R+ × (Rd − {0}) with
compensator Ñ and intensity measure ν, which we will assume is a
Lévy measure.
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We will assume that the random variable Y (0) is F0-measurable, and
then it is clear that Y is an adapted process.
We can often simplify complicated expressions by employing the
notation of stochastic differentials to represent Lévy-type stochastic
integrals. We then write the last expression as

dY (t) = G(t)dt + F (t)dB(t) + H(t , x)Ñ(dt ,dx)

+ K (t , x)N(dt ,dx).

When we want to particularly emphasise the domains of integration
with respect to x , we will use an equivalent notation

dY (t) = G(t)dt + F (t)dB(t) +

∫
|x |<1

H(t , x)Ñ(dt ,dx)

+

∫
|x |≥1

K (t , x)N(dt ,dx).

Clearly Y is a semimartingale.
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Let M = (M(t), t ≥ 0) be an adapted process which is such that
MJ ∈ P2(t ,A) whenever J ∈ P2(t ,A) (where A ∈ B(Rd ) is arbitrary).
For example, it is sufficient to take M to be adapted and
left-continuous.
For these processes we can define an adapted process
Z = (Z (t), t ≥ 0) by the prescription that it have the stochastic
differential

dZ (t) = M(t)G(t)dt + M(t)F (t)dB(t) + M(t)H(t , x)Ñ(dt ,dx)

+ M(t)K (t , x)N(dt ,dx),

and we will adopt the natural notation,

dZ (t) = M(t)dY (t).
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Example (Lévy Stochastic Integrals)
Let X be a Lévy process with characteristics (b,a, ν) and Lévy-Itô
decomposition:

X (t) = bt + Ba(t) +

∫
|x |<1

xÑ(t ,dx) +

∫
|x |≥1

xN(t ,dx),

for each t ≥ 0. Let L ∈ P2(t) for all t ≥ 0 and choose each
F i

j = ai
jL,H

i = K i = x iL. Then we can construct processes with the
stochastic differential

dY (t) = L(t)dX (t) (0.3)

We call Y a Lévy stochastic integral.
In the case where X has finite variation, the Lévy stochastic integral Y
can also be constructed as a Lebesgue-Stieltjes integral, and this
coincides (up to a set of measure zero) with the prescription (0.3).
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Example: The Ornstein Uhlenbeck Process (OU Process)

Y (t) = e−λty0 +

∫ t

0
e−λ(t−s)dX (s) (0.4)

where y0 ∈ Rd is fixed, is a Markov process. The condition∫
|x |>1

log(1 + |x |)ν(dx) <∞

is necessary and sufficient for it to be stationary. There are important
applications to volatility modelling in finance which have been
developed by Ole Barndorff-Nielsen and Neil Sheppard. Intriguingly,
every self-decomposable random variable can be naturally embedded
in a stationary Lévy-driven OU process.
See lecture 5 for more details.
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Stochastic integration has a plethora of applications including filtering,
stochastic control and infinite dimensional analysis. Here’s some
motivation from finance. Suppose that X (t) is the value of a stock at
time t and F (t) is the number of stocks owned at time t . Assume for
now that we buy and sell stocks at discrete times
0 = t0 < t1 < · · · < tn < tn+1 = T . Then the total value of the portfolio
at time T is:

V (T ) = V (0) +
n∑

j=0

F (tj)(X (tj+1)− X (tj)),

and in the limit as the times become infinitesimally close together, we
have the stochastic integral

V (T ) = V (0) +

∫ t

0
F (s)dX (s).
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Stochastic integration against Brownian motion was first developed by
Wiener for sure functions. Itô’s groundbreaking work in 1944 extended
this to random adapted integrands.The generalisation of the integrator
to arbitrary martingales was due to Kunita and Watanabe in 1967and
the further step to allow semimartingales was due to P.A.Meyer and
the Strasbourg school in the 1970s.
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Itô’s Formula

We begin with the easy case - Itô’s formula for Poisson stochastic
integrals of the form

W i(t) = W i(0) +

∫ t

0

∫
A

K i(t , x)N(dt ,dx) (0.5)

for 1 ≤ i ≤ d , where t ≥ 0,A is bounded below and each K i is
predictable. Itô’s formula for such processes takes a particularly simple
form.
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Lemma

If W is a Poisson stochastic integral of the above form then for each
f ∈ C(Rd ), and for each t ≥ 0, with probability one, we have

f (W (t))− f (W (0)) =

∫ t

0

∫
A

[f (W (s−) + K (s, x))− f (W (s−))]N(ds,dx).
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Proof. Let Y (t) =
∫

A xN(dt ,dx) and recall that the jump times for Y are
defined recursively as T A

0 = 0 and for each
n ∈ N,T A

n = inf{t > T A
n−1; ∆Y (t) ∈ A}. We then find that,

f ((W (t))− f (W (0))

=
∑

0≤s≤t

f (W (s))− f (W (s−))

=
∞∑

n=1

f (W (t ∧ T A
n ))− f (W (t ∧ T A

n−1))

=
∞∑

n=1

[f (W (t ∧ T A
n −) + K (t ∧ T A

n ,∆Y (t ∧ T A
n )))− f (W (t ∧ T A

n −))]

=

∫ t

0

∫
A

[f (W (s−) + K (s, x))− f (W (s−))]N(ds,dx). 2
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The celebrated Itô formula for Brownian motion is probably well-known
to you so I’ll briefly outline the proof. Let (Pn,n ∈ N) be a sequence of
partitions of the form
Pn = {0 = t(n)

0 < t(n)
1 < . . . < t(n)

m(n) < t(n)
m(n)+1 = T}. and suppose that

limn→∞ δ(Pn) = 0, where the mesh, δ(Pn) = max0≤j≤m(n) |t
(n)
j+1 − t(n)

j |.
As a preliminary - you need the following:-

Lemma

If Wkl ∈ H2(T ) for each 1 ≤ k , l ≤ m, then

L2 − lim
n→∞

n∑
j=0

Wkl(t
(n)
j )(Bk (t(n)

j+1)− Bk (t(n)
j ))(Bl(t(n)

j+1)− Bl(t(n)
j ))

=
m∑

k=1

∫ T

0
Wkk (s)ds.

The proof is similar to that of Lemma 1 - but you will need the
Gaussian moment E(B(t)4) = 3t2. 2
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Now let M be a Brownian integral with drift of the form

M i(t) =

∫ t

0
F i

j (s)dBj(s) +

∫ t

0
Gi(s)ds, (0.6)

where each F i
j , (G

i)
1
2 ∈ P2(t), for all t ≥ 0,1 ≤ i ≤ d ,1 ≤ j ≤ m.

For each 1 ≤ i ≤ j , we introduce the quadratic variation process
denoted as ([M i ,M j ](t), t ≥ 0) by

[M i ,M j ](t) =
m∑

k=1

∫ T

0
F i

k (s)F j
k (s)ds.

We will explore quadratic variation in greater depth in the sequel. The
following slick method of proving Itô’s formula is due to Kunita.
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Theorem (Itô’s Theorem 1)

If M = (M(t), t ≥ 0) is a Brownian integral with drift of the form (0.6),
then for all f ∈ C2(Rd ), t ≥ 0, with probability 1, we have

f (M(t))−f (M(0)) =

∫ t

0
∂i f (M(s))dM i(s)+

1
2

∫ t

0
∂i∂j f (M(s))d [M i ,M j ](s).
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Proof. Let (Pn,n ∈ N) be a sequence of partitions of [0, t ] as above.
By Taylor’s theorem, we have, for each such partition (where we
suppress the index n).

f (M(t))− f (M(0)) =
m∑

k=0

f (M(tk+1))− f (M(tk ))

= J1(t) +
1
2

J2(t),

where

J1(t) =
m∑

k=0

∂i f (M(tk ))(M i(tk+1)−M i(tk )),

J2(t) =
m∑

k=0

∂i∂j f (Nk
ij )(M i(tk+1)−M i(tk ))(M j(tk+1)−M j(tk )),

and where the Nk
ij ’s are each F(tk+1)-adapted Rd -valued random

variables satisfying |Nk
ij −M(tk )| ≤ |M(tk+1)−M(tk )|.
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We write each J2(t) = K1(t) + K2(t),where

K1(t) =
m∑

k=0

∂i∂j f (M(tk ))(M i(tk+1)−M i(tk ))(M j(tk+1)−M j(tk )),

K2(t) =
m∑

k=0

[∂i∂j f (Nk
ij )−∂i∂j f (M(tk ))](M i(tk+1)−M i(tk ))(M j(tk+1)−M j(tk )).

Now take limits as n→∞. It turns out that K2(t)→ 0, in probability
and the result follows. 2
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Itô’s formula for general Lévy-type stochastic integrals is obtained
essentially by combining the Poisson and Brownian results and making
sure you take good care of the compensators for small jumps. You
should be able to guess the right result.
To give a precise statement, consider a Lévy-type stochastic integral of
the form

dY (t) = G(t)dt +F (t)dB(t)+H(t , x)Ñ(dt ,dx)+K (t , x)N(dt ,dx). (0.7)
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Theorem (Itô’s Theorem 2)

If Y is a Lévy-type stochastic integral of the above form then for each
f ∈ C2(Rd ), t ≥ 0, with probability 1, we have

f (Y (t))− f (Y (0))

=

∫ t

0
∂i f (Y (s−))dY i

c(s) +
1
2

∫ t

0
∂i∂j f (Y (s−))d [Y i

c ,Y
j
c](s)

+

∫ t

0

∫
|x |≥1

[f (Y (s−) + K (s, x))− f (Y (s−))]N(ds,dx)

+

∫ t

0

∫
|x |<1

[f (Y (s−) + H(s, x))− f (Y (s−))]Ñ(ds,dx)

+

∫ t

0

∫
|x |<1

[f (Y (s−) + H(s, x))− f (Y (s−))

− H i(s, x)∂i f (Y (s−))
]
ν(dx)ds.
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Here Yc denotes the continuous part of Y defined by
Y i

c(t) =
∫ t

0 Gi(s)ds +
∫ t

0 F i
j (s)dBj(s).

Tedious but straightforward algebra yields the following form, which is
important since it extends to general semimartingales:-

Theorem (Itô’s Theorem 3)

If Y is a Lévy-type stochastic integral of the above form then for each
f ∈ C2(Rd ), t ≥ 0, with probability 1, we have

f (Y (t))− f (Y (0))

=

∫ t

0
∂i f (Y (s−))dY i(s) +

1
2

∫ t

0
∂i∂j f (Y (s−))d [Y i

c ,Y
j
c](s)

+
∑

0≤s≤t

[f (Y (s))− f (Y (s−))−∆Y i(s)∂i f (Y (s−))].
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Note that a special case of Itô’s formula yields the following “classical”
chain rule for differentiable functions f , when the process Y is of finite
variation:

f (Y (t))− f (Y (0)) =

∫ t

0
∂i f (Y (s−))dY i(s) +

+
∑

0≤s≤t

[f (Y (s))− f (Y (s−))−∆Y i(s)∂i f (Y (s−))].

A form of Itô’s formula may even be established for fractional Brownian
motion, which is not a semimartingale.
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Quadratic Variation and Itô’s Product Formula

We extend the definition of quadratic variation to the more general
case of Lévy-type stochastic integrals Y = (Y (t), t ≥ 0). So for each
t ≥ 0 we define a d × d matrix-valued adapted process
[Y ,Y ] = ([Y ,Y ](t), t ≥ 0) by the following prescription for its (i , j)th
entry (1 ≤ i , j ≤ d),

[Y i ,Y j ](t) = [Y i
c ,Y

j
c](t) +

∑
0≤s≤t

∆Y i(s)∆Y j(s). (0.8)

Each [Y i ,Y j ](t) is almost surely finite, and we have

[Y i ,Y j ](t) =
m∑

k=1

∫ T

0
F i

k (s)F j
k (s)ds +

∫ t

0

∫
|x |<1

H i(s, x)H j(s, x)N(ds,dx)

+

∫ t

0

∫
|x |≥1

K i(s, x)K j(s, x)N(ds,dx), (0.9)

so that we clearly have each [Y i ,Y j ](t) = [Y j ,Y i ](t). Note that the
integral over small jumps in this case is always a.s. finite (Why ?)
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It is easy to show that for each α, β ∈ R and 1 ≤ i , j , k ≤ d , t ≥ 0,

[αY i + βY j ,Y k ](t) = α[Y i ,Y k ](t) + β[Y j ,Y k ](t).

The importance of [Y ,Y ] is that it measures the deviation in the
stochastic differential of products from the usual Leibniz formula. The
following result makes this precise

Theorem (Itô’s Product Formula)

If Y 1 and Y 2 are real-valued Lévy-type stochastic integrals of the form
(0.7), then for all t ≥ 0, with probability one, we have that

Y 1(t)Y 2(t) = Y 1(0)Y 2(0) +

∫ t

0
Y 1(s−)dY 2(s)

+

∫ t

0
Y 2(s−)dY 1(s) + [Y 1,Y 2](t).
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Proof. We consider Y 1 and Y 2 as components of a vector
Y = (Y 1,Y 2) and we take f in Theorem 7 to be the smooth mapping
from R2 to R given by f (x1, x2) = x1x2.
By Theorem 7, we then obtain, for each t ≥ 0, with probability one,

Y 1(t)Y 2(t) = Y 1(0)Y 2(0) +

∫ t

0
Y 1(s−)dY 2(s)

+

∫ t

0
Y 2(s−)dY 1(s) + [Y 1

c ,Y
2
c ](t)

+
∑

0≤s≤t

[Y 1(s)Y 2(s)− Y 1(s−)Y 2(s−)

− (Y 1(s)− Y 1(s−))Y 2(s−)− (Y 2(s)− Y 2(s−))Y 1(s−)],

from which the required result easily follows. 2
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We can learn much about the way our Itô formulae work by writing the
product formula in differential form:-

d(Y 1(t)Y 2(t)) = Y 1(t−)dY 2(t) + Y 2(t−)dY 1(t) + d [Y 1,Y 2](t).

We see that the term d [Y 1,Y 2](t), which is sometimes called an Itô
correction, arises as a result of the following formal product relations
between differentials:-

dBi(t)dBj(t) = δijdt ; N(dt ,dx)N(dt ,dy) = N(dt ,dx)δ(x − y),

for 1 ≤ i , j ≤ m, with all other products of differentials vanishing and if
you have little previous experience of this game, these relations are a
very valuable guide to intuition.
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For completeness, we will give another characterisation of quadratic
variation which is sometimes quite useful. We recall the sequence of
partitions (Pn,n ∈ N), with mesh tending to zero which were
introduced earlier.

Theorem

If X and Y are real-valued Lévy-type stochastic integrals then for each
t ≥ 0, with probability one, we have

[X ,Y ](t) = lim
n→∞

mn∑
j=0

(X (t(n)
j+1)− X (t(n)

j ))(Y (t(n)
j+1)− Y (t(n)

j )),

where the limit is taken in probability.
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Proof. By polarisation, it is sufficient to consider the case X = Y .
Using the identity

(x − y)2 = x2 − y2 − 2y(x − y)

for x , y ∈ R, we deduce that

mn∑
j=0

(X (t(n)
j+1)− X (t(n)

j ))2 =
mn∑
j=0

X (t(n)
j+1)2 −

mn∑
j=0

X (t(n)
j )2

− 2
mn∑
j=0

X (t(n)
j )(X (t(n)

j+1)− X (t(n)
j )),

and the required result follows from Itô’s product formula. 2
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Many of the results of this lecture extend from Lévy-type stochastic
integrals to arbitrary semimartingales. In particular, if F is a simple
process and X is a semimartingale we can again use Itô’s prescription
to define ∫ t

0
F (s)dX (s) =

∑
F (tj)(X (tj+1)− X (tj)),

and then pass to the limit to obtain more general stochastic integrals.
Itô’s formula can be established in the form given in Theorem 7 and the
quadratic variation of semimartingales defined as the correction term
in the corresponding Itô product formula.
Although stochastic calculus for general semimartingales is not the
subject of these lectures, we do require one result - the famous Lévy
characterisation of Brownian motion.
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Theorem (Lévy’s characterisation)

Let M = (M(t), t ≥ 0) be a continuous centered martingale, which is
adapted to a given filtration (Ft , t ≥ 0). If [Mi ,Mj ](t) = aij t for each
t ≥ 0,1 ≤ i , j ≤ d where a = (aij) is a positive definite symmetric
matrix, then M is an Ft -adapted Brownian motion with covariance a.

Proof. Fix u ∈ Rd and define the process (Yu(t), t ≥ 0) by
Yu(t) = ei(u,M(t)), then by Itô’s formula, we obtain

dYu(t) = iujYu(t)dMj(t)−
1
2

uiujYu(t)d [Mi ,Mj ](t)

= iujYu(t)dMj(t)−
1
2

(u,au)Yu(t)dt .
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Upon integrating from s to t , we obtain

Yu(t) = Yu(s) + iuj
∫ t

s
Yu(τ)dMj(τ)− 1

2
(u,au)

∫ t

s
Yu(τ)dτ.

Now take conditional expectations of both sides with respect to Fs, and
use the conditional Fubini Theorem to obtain

E(Yu(t)|Fs) = Yu(s)− 1
2

(u,au)

∫ t

s
E(Yu(τ)|Fs)dτ.

Hence E(ei(u,M(t)−M(s))|Fs) = e−
1
2 (u,au)(t−s). 2
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Stochastic Differential Equations

Using Picard iteration one can show the existence of a unique solution
to

dY (t) = b(Y (t−))dt + σ(Y (t−))dB(t) + (0.10)

+

∫
|x |<c

F (Y (t−), x)Ñ(dt ,dx) +

∫
|x |≥c

G(Y (t−), x)N(dt ,dx),

which is a convenient shorthand for the system of SDE’s:-

dY i(t) = bi(Y (t−))dt + σi
j (Y (t−))dBj(t) + (0.11)

+

∫
|x |≤c

F i(Y (t−), x)Ñ(dt ,dx) +

∫
|x |>c

Gi(Y (t−), x)N(dt ,dx),

where each 1 ≤ i ≤ d .
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The simplest conditions under which this holds are:-

(1) Lipschitz Condition

There exists K1 > 0 such that for all y1, y2 ∈ Rd ,

|b(y1)− b(y2)|2 + ||a(y1, y1)− 2a(y1, y2) + a(y2, y2)||(0.12)

+

∫
|x |<c

|F (y1, x)− F (y2, x)|2ν(dx) ≤ K1|y1 − y2|2.

(2) Growth Condition

There exists K2 > 0 such that for all y ∈ Rd ,

|b(y)|2 + ||a(y , y)||+
∫
|x |<c

|F (y , x)|2ν(dx) ≤ K2(1 + |y |2). (0.13)

(3) Big Jumps Condition

G is jointly measurable and y → G(y , x) is continuous for all |x | ≥ 1.

Here, || · || is the matrix seminorm ||a|| =
∑d

i=1 |ai
i |, and

a(x , y) = σ(x)σ(y)T .
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We also impose the standard initial condition Y (0) = Y0 (a.s.) for
which Y0 is independent of (Ft , t > 0). Solutions of SDEs are Markov
processes and, in the case where there are no jumps, diffusion
processes.
A special case of considerable interest is

dY (t) = L(Y (t−))dX (t).

You can check that the conditions given above boil down to the single
requirement that L be globally Lipshitz, in order to get existence and
uniqueness.
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Stochastic Exponentials

For convenience we take d = 1 and consider the problem of finding an
adapted process Z = (Z (t), t ≥ 0) which has a stochastic differential

dZ (t) = Z (t−)dY (t),

where Y is a Lévy-type stochastic integral.
The solution of this problem is obtained as follows. We take Z to be
the stochastic exponential (sometimes called Doléans-Dade
exponential after its discoverer), which is denoted as
EY = (EY (t), t ≥ 0) and defined as

EY (t) = exp
{

Y (t)− 1
2

[Yc ,Yc](t)
} ∏

0≤s≤t

(1 + ∆Y (s))e−∆Y (s), (0.14)

for each t ≥ 0.
We will need the following assumption:

(SE) inf{∆Y (t), t > 0} > −1, (a.s.).
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Theorem
If Y is a Lévy-type stochastic integral of the form (0.7) and (SE) holds,
then each EY (t) is almost surely finite.

Proof. We must show that the infinite product in (0.14) converges
almost surely. We write∏

0≤s≤t

(1 + ∆Y (s))e−∆Y (s) = A(t) + B(t),

where A(t) =
∏

0≤s≤t (1 + ∆Y (s))e−∆Y (s)1{|∆Y (s)|≥ 1
2}

and

B(t) =
∏

0≤s≤t (1 + ∆Y (s))e−∆Y (s)1{|∆Y (s)|< 1
2}

.
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Now since Y is càdlàg, #{0 ≤ s ≤ t ; |∆Y (s)| ≥ 1
2} <∞ (a.s.), and so

A(t) is a finite product. Using the assumption (SE), we have

B(t) = exp

 ∑
0≤s≤t

[log(1 + ∆Y (s))−∆Y (s)]1{|∆Y (s)|< 1
2}

.
We now employ Taylor’s theorem to obtain the inequality

log(1 + y)− y ≤ Ky2,

where K > 0, which is valid whenever |y | < 1
2 . Hence∣∣∣∣∣∣

∑
0≤s≤t

[log(1 + ∆Y (s))−∆Y (s)]1{|∆Y (s)|< 1
2}

∣∣∣∣∣∣ ≤
∑

0≤s≤t

|∆Y (s)|21{|∆Y (s)|< 1
2}

< ∞ a.s.

and we have our required result. 2

Of course (SE) ensures that EY (t) > 0 (a.s.).
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The stochastic exponential is, in fact the unique solution of the
stochastic differential equation dZ (t) = Z (t−)dY (t), with initial
condition Z (0) = 1 (a.s.).
The restrictions (SE) can be dropped and the stochastic exponential
extended to the case where Y is an arbitrary (real valued or even
complex-valued) càdlàg semimartingale, but the price we have to pay
is that EY may then take negative values.
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The following alternative form of (0.14) is quite useful :

EY (t) = eSY (t),

where dSY (t) = F (t)dB(t) +

(
G(t)− 1

2
F (t)2

)
dt

+

∫
|x |≥1

log(1 + K (t , x))N(dt ,dx)

+

∫
|x |<1

log(1 + H(t , x))Ñ(dt ,dx)

+

∫
|x |<1

(log(1 + H(t , x))− H(t , x))ν(dx)ds.
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Theorem

dEY (t) = EY (t−)dY (t).

Proof. We apply Itô’s formula to EY (t) = eSY (t) to obtain for each
t ≥ 0,

dEY (t)
= EY (t−) (F (t)dB(t) + G(t)dt

+

∫
|x |<1

(log(1 + H(t , x))− H(t , x))ν(dx)dt)

+

∫
|x |≥1

[exp{SY (t−) + log(1 + K (t , x))} − exp (SY (t−))]N(dt ,dx)

+

∫
|x |<1

[exp{SY (t−) + log(1 + H(t , x))} − exp (SY (t−))]Ñ(dt ,dx)

+

∫
|x |<1

[exp{SY (t−) + log(1 + H(t , x))} − exp (SY (t−))

− log(1 + H(t , x)) exp SY (t−)]ν(dx)dt)
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and so

dEY (t) = EY (t−)[F (t)dB(t)+G(t)dt+K (t , x)N(dt ,dx)+H(t , x)Ñ(dt ,dx)].

as required. 2

Examples
1 If Y (t) = σB(t) where σ > 0 and B = (B(t), t ≥ 0) is a standard

Brownian motion, then

EY (t) = exp
{
σB(t)− 1

2
σ2t
}
.

2 If Y = (Y (t), t ≥ 0) is a compound Poisson process, so that each
Y (t) = X1 + · · ·+ XN(t), where (Xn,n ∈ N) are i.i.d. and N is an
independent Poisson process, we have

EY (t) =

N(t)∏
j=1

(1 + Xj),

for each t ≥ 0.
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If X and Y are Lévy-type stochastic integrals, you can check that

EX (t)EY (t) = EX+Y +[X ,Y ](t),

for each t ≥ 0.
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