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1 (i) Let S be a given set and consider the following statements:

(I) A σ�algebra is a collection Σ of subsets of S for which
∞⋃
n=1

An ∈ Σ,

whenever An ∈ S for all n ∈ N.
(II) A measure is a mapping m : S → [0,∞) for which

m

(
∞⋃
n=1

An

)
=
∞∑
n=1

m(An),

whenever (An) is a sequence of subsets of S.

These statements are both wrong. Explain carefully how they can be cor-
rected. (7 marks)

(ii) Let Σ1 and Σ2 be σ�algebras of a set S.

(a) De�ne
Σ1 ∩ Σ2 = {A ⊆ S,A ∈ Σ1 and A ∈ Σ2}.

Show that Σ1 ∩ Σ2 is a σ�algebra. (3 marks)

(b) De�ne
Σ1 ∪ Σ2 = {A ⊆ S,A ∈ Σ1 or A ∈ Σ2},

(where �or� is inclusive). Either show that Σ1 ∪ Σ2 is a σ�algebra,
or give a counter�example to demonstrate that, in general, it isn't.

(3 marks)

(iii) Recall that a set is countable if it can be put into one�to�one correspondence
with the natural numbers. Let S be a set and Σ be a collection of subsets
of S that is chosen as follows: A ∈ Σ if either A is �nite or countable or Ac

is �nite or countable. Show that Σ is a σ�algebra. You may use the facts
that a countable union of �nite or countable sets is itself �nite or countable,
and that a subset of a countable set is �nite or countable. (8 marks)

(iv) De�ne the symmetric di�erence A4B between subsets A and B of S by

A4B = (A ∪B)− (A ∩B).

(a) Show that A4B = (A−B) ∪ (B − A). (5 marks)

(b) Calculate the Lebesgue measure of A4B when A = (0, 1) and B =
(−1/3, 1/2) ∪ (3/4, 2). (4 marks)

(c) If A and B are as in (b), and S = (−1, 2) equipped with the uniform
probability measure on its Borel σ-algebra, what is the probability
of the set A4B? (3 marks)
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2 Throughout this question (S,Σ,m) is a measure space and R is equipped with its
usual Borel σ-algebra. Lebesgue measure on (R,B(R)) is denoted by λ.

(i) Let f : S → R be measurable. Explain how the Lebesgue integral of f is
constructed in each of the following cases, carefully stating any restrictions
on f that are needed (if necessary), and giving the range of values that the
integral may take:

(a) f is a non�negative simple function, (3 marks)

(b) f is a non�negative measurable function, (2 marks)

(c) f is a general measurable function. (3 marks)

What does it mean for f to be integrable? (1 mark)

(ii) Let f : R→ R be de�ned as follows

f =



0 if x < −2
−7, if − 2 ≤ x < −1,
4 if − 1 ≤ x < 0,
11 if 0 ≤ x < 1,
−3 if 1 ≤ x < 2,
−2 if 2 ≤ x < 5,
0, if x ≥ 5

Write |f | as a simple function and hence calculate

∫
S

|f |dλ. (3 marks)

(iii) If f : R→ R is measurable and g(x) =
xf(x)

1 + x2
for all x ∈ R, explain why g

is integrable. (5 marks)

(iv) Suppose that g : S → (0,∞) is a measurable function.

(a) Prove that 1/g is measurable, where (1/g)(x) = 1/g(x), for all x ∈ S.
(6 marks)

(b) If f : S → R is measurable, show that h = f/g is measurable.
(3 marks)

(v) Let (fn) be a sequence of measurable functions from S to R and de�ne

A = {x ∈ S; lim
n→∞

fn(x) exists}.

Show that A ∈ Σ. [Hint: Make use of the measurable functions lim inf
n→∞

fn

and lim sup
n→∞

fn.] (7 marks)
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3 (i) Let (S1,Σ1,m1) and (S2,Σ2,m2) be measure spaces. A version of Fubini's
theorem is as follows: Let f : S1 × S2 → R be a non-negative measurable
function. Then the mappings

x→
∫
S2

f(x, y)dm2(y) and y →
∫
S1

f(x, y)dm1(x),

are both measurable. Furthermore

∫
S1×S2

fd(m1 ×m2) =

∫
S1

(∫
S2

f(x, y)dm2(y)

)
dm1(x)

=

∫
S2

(∫
S1

f(x, y)dm1(x)

)
dm2(y).

(a) Explain brie�y why this theorem is true in the case where f is an
indicator function. You should not give a detailed proof, but your
explanation should include de�nitions of key concepts such as x and
y-slices of a set (where x ∈ S1 and y ∈ S2), and product measure.

(9 marks)

(b) Using the result of (a), give a detailed proof of the theorem for
general non-negative measurable functions f . (8 marks)

(c) Prove Fubini's theorem for a real-valued, integrable function

f : S1 × S2 → R. (6 marks)

(ii) (a) Explain why (x, y) → e−x−y
xy2

(1 + x2)(1 + y2)
is integrable (with

respect to Lebesgue measure) on (0, 1) × (0, 1). Do not attempt to
evaluate the integral. (4 marks)

(b) Evaluate lim
n→∞

∫ 1

0

∫ 1

0

e−(x+y
n ) nxy2

(1 + x2)(n+ y2)
dxdy. (6 marks)
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4 Throughout this question, (Ω,F , P ) is a probability space.

(i) Let (An) be a sequence of subsets of Ω in F .
(a) De�ne the sets lim sup

n→∞
An and lim inf

n→∞
An, and brie�y explain why

each set is in F . (3 marks)

(b) Give a direct proof that lim sup
n→∞

P (An) ≤ P

(
lim sup
n→∞

An

)
.

(5 marks)

(c) If B ∈ F , show that

B − lim inf
n→∞

An = lim sup
n→∞

(B − An).

Hence deduce that
(

lim inf
n→∞

An

)c
= lim sup

n→∞
Ac

n. (7 marks)

(ii) If X : Ω→ R is an integrable random variable and a ∈ R, show that

E(min{X, a}) ≤ min{E(X), a}.

(6 marks)

Use this inequality to �nd an upper bound for E(min{X, a}) when
(a) a = 1, and X is a Bernoulli random variable taking values 1 with

probability 3/4 and 0 with probability 1/4, (1 mark)

(b) a = 54, and X = Y1 + Y2 + · · · + Y10 with Yk ∼ N(k, 1) for k =
1, 2, . . . , 10. (3 marks)

(iii) State Lebesgue's dominated convergence theorem in a probabilistic context.
(3 marks)

(iv) A sequence (Xn) of random variables is said to converge in the mean to a
random variable X if lim

n→∞
E(|Xn−X|) = 0. Let (An, n ∈ N) be a sequence

of subsets of Ω for which An ∈ F , An ⊆ An+1 for all n ∈ N, and
⋃
n∈N

An = Ω.

(a) Show that (1An , n ∈ N) converges pointwise to 1 on Ω. (2 marks)

(b) Let X be an integrable random variable and de�ne Xn = X1An for
each n ∈ N. Prove that (Xn, n ∈ N) converges in mean to X.

(3 marks)

End of Question Paper
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