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1 Stochastic Evolution Equations

General set-up:
H is a real separable Hilbert space. Inner product (-, ).
L(H) - bounded linear operators on H.

Y = (Y(t),t > 0) is an H-valued process satisfying

dY (t) = [JY (t—) + B(Y (t—))]dt + C(Y (t—))dX (), (1.1)
e B and C are suitable (Lipshitz) mappings H — L(H);
e X is an H-valued semimartingale;

e J is the infinitesimal generator of a one-parameter semi-
group (S(t),t > 0) on H.

Motivation: SPDES driven by space-time white noise can be
reformulated as SEEs driven by L?(space)-valued noise.

Applications - e.g. Burgers turbulence, interest rate models.
X = Brownian motion (da Prato and Zabzcyk).
We take

e X is a Lévy process
e B=0,C()=C € L(H)

We study the infinite dimensional Langevin equation:

dY (t) = JY (t) + CdX ().



2 Lévy Processes in H

Filtered space (2, F, (F,t > 0), P).
X = (X(t),t >0) is a Lévy process, i.e.
e stationary and independent increments;
e X(0) =0 (as.)
e cadlag paths, stochastic continuity.
Lévy-Khintchine formula (Varadhan)
E(e X)) = g=tn(v)
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forallt > 0,u € H.
nu) = —ifb.u) + 3 (. Qu)
s [ e iy (22
H—{0}

Characteristics (b, Q, v):

e bec H,

e () is a positive, self-adjoint, trace class operator on H,

e v is a Lévy measure on H — {0}, i.e.
[ e awtay) < oo
H—{0}

(B={ze H,0<|z| <1}).



Poisson random measure on RT x (H — {0}):
N({t,A) =#{0 < s <t; AX(s) € A}.

Compensator N(dt, dzr) = N(dt,dz) — dtv(dz).

Lévy-Ito Decomposition

X(t) = bt + Byl(t) +/ xN(t,dx) +/| - xN(t,dx).

|l[[<1

Bg is a Brownian motion with covariance operator ):

E((u, Ba(s)){v, Bg(t))) = (s At)(u, Qu).

Poisson analogue:

E <<u /A xN(s,dx)> <v, /B a:N(t,da:)>> = (sAt) /A u Top(d),

where T,v := (z,v)x.

T, = |z)(z| in Dirac’s “bra-ket” notation.)

To see this observe that

E <<u /A xN(s,d:z:)> <v, /B :r:N(t,dx)>)
_E ( /A (u, 2) N (s, dx) /B (v,x)N(t,dm))

= (sAt) AQB<u,x><v,x>u(dx).

T, is easily seen to be positive, self-adjoint and trace-class.



3 Stochastic Integration

Aim : To define fOT F(s)dB +f0 [ F(s,2)zN(ds,dz),

Integrators: - martingale valued measure:

M((s,t],A) = (Bg(t) — Bg(s))d(A) —|—/ /A{o} e N (dt, dx).

Qifx=0
T,ifx#0

Integrands: Ho(7') is real Hilbert space of all (predictable)
F:Qx[0,T] x B— L(H) for which

IF|2 = E (/OT/Btr(F(s,a:)RxF(s,a:)*)v(d:U)ds> < o0

Begin with step-functions of the form

N1 Ny
F= Z Z Ejl(tiati+1]1Aj’

i=0 j=0

Covariance field R, =

with each Fj; being JF;,-measurable.

N1 N

Define Ir(F) =Y > FM((ti tjn], 4)).
=0 j=0

Compute E(||Ir(F)||*) = [|F][3,
and extend by density in usual way.

For illustration - review Brownian motion case (da Prato and

Zabzcyk).
= Z il )
1=0

Use two facts from Hilbert space theory. Let (e,,n € N) be
an orthonormal basis:-



(i) (Parseval’s formula) If ¢ € H

16117 =D [, en)
n=0

(ii) If T is a trace-class operator

E(|[Ir(F)[[*)

In general,

tr(T) = Z<€”’ Ten)
— ZZE(<FJ(B(tj+1) B(t;)), Fr(B(te+1) — B(tr))))

j=1 m=0

= Z j41 —t Z €m7QF*€m>
j=1 m=1

= ) (tjm — t)t(FQF;)
j=1

= |IFI.

the condition ||F||3 < co can be rewritten as

E ( /0 ' /B 1F(t, )T HHSV(d:z:)dt> < o0,

where || - ||gs is the Hilbert-Schmidt norm, ie. |[|C|lgs =
tr(CC*) for C € L(H). The set of all C' € L(H) for which
|C| s < oo is a Hilbert space with respect to the inner prod-
uct (C, D)gg = tr(C'D*), which we denote as Lo(H).
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Lo(H) is a two-sided L(H )-ideal with ||C1DCs||ps < ||C1]|-]|Col|-||D||us,
for all Cy,Cy € L(H),D € L5(H). From this we easily deduce
that

/0 /B E(||F(t, 2)|]2)tr(T,)v(dz)dt < oo (3.3)

is a sufficient condition for existence of stochastic integrals.

4 Wiener-Lévy Integrals

Deterministic case:
F : Rt — L(H) measurable and locally square-integrable.

Using the Lévy 1t6 decomposition, we can define

/F(s)dX(s) = /F(s)bds (Bochner integral)
0 0

t
+ / s)dBg(s) / / s)xN(ds, dz)
|lz|]<1

+ //m||>1 s)xN(ds,dz) := ZF JAX (s)15.(AX(s))

0<s<t

In this case (3.3) is always satisfied since the LHS becomes
T
/ 17 (s)|[2ds / te(T)v(dz) and,
0 B
= ew ) =zl

neN
Important example: If (S(t),t > 0) is a Cy-semigroup then
there exists M > 1,6 > 0 such that for all ¢t > 0,

IS(0)] < Me™ (1.4)
so the stochastic convolution fg S(t — s)dX(s) exists.
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Properties of Wiener-Lévy Integrals

Proposition 4.1 For each t > 0, fo (s)dX(s) is infinitely di-
wisible and its characteristic exponent is given by

Aer(uw) ::/0 n(F(s) u)ds, (4.5)
for each uw € H.

Proof. The integral on the right hand side exists since there
exists K > 0 such that for all s > 0,u € H,

In(F () wl* < K@1+][[F(s)ull®)
< KL+ [[F()|F[ull?).

For each u € H, we define the complex valued process (M, (t),t >

0) by t
M, (t) = exp {z<u /0 F(s)dX(s)>},

for each t > 0. Using It0’s formula, we obtain

_ /tMu(s_) u)ds + / M “u, dB(s))

/ / (e wr) _ 1YN(ds, d).
H—{0}

After taking expectations, we find that

& (oxp {i (o, [ tF(s)dX(s)>}> —ew{- | tnw(s)*u)ds} ,

as was required.

To see that the stochastic integral is infinitely divisible, first
note that for each n € N, I is Sazonov continuous, hermitian,
negative definite and vanishing at zero, hence there exists a
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cadlag Lévy process (X,,(t),t > 0) such that for each u € H,t >
0,

Hence

[E (exp {z <u /Ot F(S)dX(s)> })] % — E(ei )y FOIXa)),

and the result follows. OJ

Corollary 4.1 For each t > 0, fg F(s)dX(s) has characteris-
tics (b, Qr, v¢), where

by ::/O F(s)bd5+/0 /H—{O} F(s)x[1g(z) —15(F(s)x)|v(dr)ds,
Q: ::/0 F(s)QF(s)*ds,

n(A) = /0 v(F(s)"'A)ds, for each A € B(H — {0}).

Define Ip(t) = [; F(t)dX(t).

Other useful properties:

e (Ir(t),t > 0) is an additive process.

e The laws (p;,(t),0 <t < T) are tight.

o If t — ||F(t)|| is locally bounded then t — Ip(t) is stochas-
tically continuous.



5 Ornstein-Uhlenbeck Process

dY (t) = JY (t) +dX(t), Y(0)=Y, as. (5.6)
The Ornstein-Uhlenbeck process

Y(t) = S(t)Yo + / t S(t — $)dX(s) (5.7)

(5.7) is the unique weak solution to (5.6), i.e. for all u € H,

(u, Y (t) = Yy) = (u, X (1)) +/0 (J*u,Y (s))ds.

(Chojnowska-Michalik, DA)
Y = (Y(t),t > 0) is a Markov process.

It induces a generalised Mehler semigroup (7;,t > 0) on
Cy(H):

(THy) = EGEE)Ys=1y)
- /H F(S(ty + 2)pi(de) (5.8)

where p; is the law of fot S(u)dX (u).

Conversely linear operators defined as in (5.8) form a semi-
group if and only if

prrs = pi* (ps 0 S(t)7") (5.9)
(Bogachev-Rdéckner-Schmuland, Fuhrman-Rdéckner)

A random variable X is (operator) self-decomposable if there
exists a process (Z(t),t > 0) independent of X such that

X LSMH)X + Z(b).
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(c.f. Jurek, Jurek-Vervaat)

There is a well-known connection in finite dimensions between
self-decomposable distributions and stationary OU processes.

In infinite dimensions, if Y is stationary OU

4

Y(0) L V(1) = S)Y(0) + /O St — )dX(s).

so Y'(0) is self-decomposable.

Theorem 5.1 The OU process (Y (t),t > 0) is stationary iff
the associated Mehler semigroup (T;,t > 0) has an invariant
measure p. In either case u is the law of Y (t).

Theorem 5.2 If p is an invariant measure for (T;,t > 0) then
it 18 self-decomposable.

Conversely if u is self-decomposable and [i(u) # 0 for all
u € H, then there exists a Mehler semigroup with invariant
measure [i.

Proof. 1 invariant =

/H (T.f)(@)p(dz) = /H /H F(S(®) + y)pr (dy)u(de)

_ /H f(2)u(da)

= = (o S(t)™") * pr.
Conversely, u self-decomposable =

o= (1o S(t+s)™) % s
= (1o S(t) " 0 5(s)) * (po () ™) *

= pivs = (s S % 1.

Argue as above to show p invariant. L]
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If (S(t),t > 0) is “stable”, i.e. lim;_. S(t)u = 0 for all
u e H,

e 1 is unique invariant measure (hence ergodic).
o 1 = weak-lim;_, o pr.

e 4 is infinitely divisible (Gaussian in Brownian motion case).
[ts characteristics are (bso, Qoos Voo)-

From the point of view of OU processes:
pexists iff [ S(¢)dX (t) exists in distribution.
Necessary and sufficient conditions (Chojnowska-Michalik)
(A) limy_o [5 S(t)bda exists.
(B) fooo tr(S(t)QS(t)*)dt < oo.
(©) [ [0, (1S()al> A)w(da)dr < oo
(D) limy fot fH_{O}S(T)x[lBl(S(r)(x))—lBl(x)]y(da:)ds exists.

Exponentially stable case: [|S(t)|| < Ce ™ for some C >
LA>0:

e (A) and (B) always hold.

o [7S(t)dX (t) exists in distribution iff [ foHM S(u)xN(du,dx)

exists in distribution.

The classical condition fl\xllzl log(1 + ||z||)v(dz

< oo is suf-
ficient (but not necessary) for this when dim(H) = oo
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6 Operator Self-Similarity

(S(t),t > 0) is a Cyy semigroup with infinitesimal generator .J.
(X (t),t > 0) is J-self-similar if for all a > 0:

X(at) £ S(log(a))X (t).

Lamperti transformation

Assume (S(t),t > 0) is a group.

Y stationary = S(log(t))Y (log(t)) is J-self-similar.
X is J-self-similar = S(—t) X (e') is stationary.

(Matache-Matache)
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7 The Infinitesimal Generator

(Th)(x) = /H (S8 + y)peldy).

Problem: ¢t — 7;f is not continuous for the usual uniform
topology 7, on Cy(H) or UCY(H).

Introduce the mized topology 1, on Cy(H ).
(Goldys-Kocan, Goldys- van Neerven)

It is locally convex and generated by the seminorms

Plan) (K (f) = sup sup |a, f(z)],

neN ze K,
e (K,,n € N) is a sequence of compact sets in H.
e a, > 0,lim, . a, =0.

Tm 1S complete.
Sequential convergence: f,, — f in 7, iff

(M1) sup,en SUpeg | fo(2)] < o00.
(M2) f, — fin 7y,

where 7,. is topology of uniform convergence on compacta.

Tue < T < Ty
Theorem 7.1 (7, t > 0) is strongly continuous on (Cy(H ), ).

Proof. As usual its sufficient to prove strong continuity at
t = 0. For (M1) it’s enough to consider a sequence (t,,n € N)
in [0, 1] converging to zero. Then for f € Cy(H),

supsup |(7, f)(z) — f(x)] < 2sup [ f(z)] < oo.
neN zeH xeH
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To establish (M2) use the fact that {p;,t € [0,1]} is tight,
hence given an arbitrary € > 0, there exists a compact set L in
H such that

€
pt(L) >1——— forall te]0,1].
t 8111l

Fix a compact K C H. We can use uniform continuity of f
on compacta and strong continuity of (S(t),t > 0) to argue that
there exists ¢y € [0, 1] such that 0 <t <ty =

supsup |£(S(H)r +y) = fl@+y)| <
reK yel

Now write

(,Z;f)(x) - f(x> — ]1(f,t,$) + ]2(f7t7x)a

where
(f,t,x) = /H F(S(H)z +y) — flo + 9)lldy)

ad B(f.t.a)i= [ [f(o+) = F@)lp(dy).

Now for 0 <t < t,

sup |1(f,4,2)] < sup / F(S@)z +y) — f(@+9)loldy)

zeK zeK

< supsup [f(S(t)z +y) — f(z+y)| + 2[[f][p:(L°)
reK yel

- €
2

Using uniform continuity of f on compacta and stochastic
continuity of Y, it follows by a standard argument that sup,cx |l2(f, ¢, 2)| <
%, for sufficiently small t. Hence 7; f — f ast — 0 and the result
follows. U
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The infinitesimal generator A is densely defined and closed
(with respect to 7).

C%(H) C Dom(.A) is dense in (Cy(H ), 7). It comprises those
C? functions f whose first and second derivatives are uniformly
bounded and uniformly continuous on bounded subsets of H
and for which

Ran(Df) C Dom(J*) and the mapping x — (x, J*(Df)(z)) € Cy(H),
where D is the Fréchet derivative. On this space
(Af)(2) = (@, J(Df)(@)) + (Lx [)(@),

where Lx is the infinitesimal generator of the Markov semi-
group of the Lévy process X = (X (¢),t > 0):

(Lxf)e) = {(DF)@).B) + (D) (@)Q)

s [ 1+ g) - f@) — (DHE) L)),
H—{0}

e A has a convenient core of cylinder functions.
e A has a pseudo-differential operator representation.

e When b = v = 0 (Gaussian case), A is the Kolmogorov
operator.
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