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1 Stochastic Evolution Equations

General set-up:
H is a real separable Hilbert space. Inner product 〈·, ·〉.
L(H) - bounded linear operators on H.

Y = (Y (t), t ≥ 0) is an H-valued process satisfying

dY (t) = [JY (t−) + B(Y (t−))]dt + C(Y (t−))dX(t), (1.1)

• B and C are suitable (Lipshitz) mappings H → L(H);

• X is an H-valued semimartingale;

• J is the infinitesimal generator of a one-parameter semi-
group (S(t), t ≥ 0) on H.

Motivation: SPDES driven by space-time white noise can be
reformulated as SEEs driven by L2(space)-valued noise.

Applications - e.g. Burgers turbulence, interest rate models.

X = Brownian motion (da Prato and Zabzcyk).

We take

• X is a Lévy process

• B = 0, C(·) = C ∈ L(H)

We study the infinite dimensional Langevin equation:

dY (t) = JY (t) + CdX(t).
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2 Lévy Processes in H

Filtered space (Ω,F , (Ft, t ≥ 0), P ).

X = (X(t), t ≥ 0) is a Lévy process, i.e.

• stationary and independent increments;

• X(0) = 0 (a.s.)

• càdlàg paths, stochastic continuity.

Lévy-Khintchine formula (Varadhan)

E(ei〈u,X(t)〉) = e−tη(u),

for all t ≥ 0, u ∈ H.

η(u) = −i〈b, u〉+
1

2
〈u,Qu〉

+

∫

H−{0}
[1− ei〈y,u〉 + i〈y, u〉1B̂(y)]ν(dy) (2.2)

Characteristics (b,Q, ν):

• b ∈ H,

• Q is a positive, self-adjoint, trace class operator on H,

• ν is a Lévy measure on H − {0}, i.e.
∫

H−{0}
(||y||2 ∧ 1)ν(dy) < ∞.

(B̂ = {x ∈ H; 0 < |x| < 1}).
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Poisson random measure on R+ × (H − {0}):
N(t, A) = #{0 ≤ s ≤ t; ∆X(s) ∈ A}.

Compensator Ñ(dt, dx) = N(dt, dx)− dtν(dx).

Lévy-Itô Decomposition

X(t) = bt + BQ(t) +

∫

||x||<1
xÑ(t, dx) +

∫

||x||≥1
xN(t, dx).

BQ is a Brownian motion with covariance operator Q:

E(〈u,BQ(s)〉〈v, BQ(t)〉) = (s ∧ t)〈u,Qv〉.
Poisson analogue:

E
(〈

u,

∫

A

xÑ(s, dx)

〉〈
v,

∫

B

xÑ(t, dx)

〉)
= (s∧t)

∫

A∩B

〈u, Txv〉ν(dx),

where Txv := 〈x, v〉x.

Tx = |x〉〈x| in Dirac’s “bra-ket” notation.)

To see this observe that

E
(〈

u,

∫

A

xÑ(s, dx)

〉〈
v,

∫

B

xÑ(t, dx)

〉)

= E
(∫

A

〈u, x〉Ñ(s, dx)

∫

B

〈v, x〉Ñ(t, dx)

)

= (s ∧ t)

∫

A∩B

〈u, x〉〈v, x〉ν(dx).

Tx is easily seen to be positive, self-adjoint and trace-class.
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3 Stochastic Integration

Aim : To define
∫ T

0 F (s)dB(s) +
∫ T

0

∫
B̂ F (s, x)xÑ(ds, dx),

Integrators: - martingale valued measure:

M((s, t], A) = (BQ(t)−BQ(s))δ0(A) +

∫ t

s

∫

A−{0}
xÑ(dt, dx).

Covariance field Rx =

{
Q if x = 0
Tx if x 6= 0

Integrands: H2(T ) is real Hilbert space of all (predictable)
F : Ω× [0, T ]× B̂ → L(H) for which

||F ||22 := E
(∫ T

O

∫

B̂

tr(F (s, x)RxF (s, x)∗)ν(dx)ds

)
< ∞.

Begin with step-functions of the form

F =

N1∑
i=0

N2∑
j=0

Fij1(ti,ti+1]1Aj
,

with each Fij being Fti-measurable.

Define IT (F ) =

N1∑
i=0

N2∑
j=0

FijM((ti, tj+1], Aj).

Compute E(||IT (F )||2) = ||F ||22,
and extend by density in usual way.

For illustration - review Brownian motion case (da Prato and
Zabzcyk).

F =
n∑

i=0

Fi1(ti,ti+1].

Use two facts from Hilbert space theory. Let (en, n ∈ N) be
an orthonormal basis:-
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(i) (Parseval’s formula) If ψ ∈ H

||ψ||2 =
∞∑

n=0

|〈ψ, en〉|2.

(ii) If T is a trace-class operator

tr(T ) =
∞∑

n=0

〈en, T en〉.

E(||IT (F )||2) =
n∑

j=1

n∑

k=1

E(〈Fj(B(tj+1)−B(tj)), Fk(B(tk+1)−B(tk))〉)

=
n∑

j=1

E(||Fj(B(tj+1)−B(tj))||2)

=
n∑

j=1

∞∑
m=0

E(|〈Fj(B(tj+1)−B(tj)), em〉|2) by (i)

=
n∑

j=1

(tj+1 − tj)
∞∑

m=1

〈F ∗
j em, QF ∗

j em〉

=
n∑

j=1

(tj+1 − tj)tr(FjQF ∗
j )

= ||F ||22.
In general, the condition ||F ||22 < ∞ can be rewritten as

E
(∫ T

0

∫

B̂

||F (t, x)T
1
2
x ||HSν(dx)dt

)
< ∞,

where || · ||HS is the Hilbert-Schmidt norm, i.e. ||C||HS =
tr(CC∗) for C ∈ L(H). The set of all C ∈ L(H) for which
||C||HS < ∞ is a Hilbert space with respect to the inner prod-
uct (C, D)HS = tr(CD∗), which we denote as L2(H).
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L2(H) is a two-sided L(H)-ideal with ||C1DC2||HS ≤ ||C1||.||C2||.||D||HS,
for all C1, C2 ∈ L(H), D ∈ L2(H). From this we easily deduce
that ∫ T

0

∫

B̂

E(||F (t, x)||2)tr(Tx)ν(dx)dt < ∞ (3.3)

is a sufficient condition for existence of stochastic integrals.

4 Wiener-Lévy Integrals

Deterministic case:

F : R+ → L(H) measurable and locally square-integrable.

Using the Lévy Itô decomposition, we can define
∫ t

0
F (s)dX(s) :=

∫ t

0
F (s)bds (Bochner integral)

+

∫ t

0
F (s)dBQ(s) +

∫ t

0

∫

||x||<1
F (s)xÑ(ds, dx)

+

∫ t

0

∫

||x||≥1
F (s)xN(ds, dx) :=

∑
0≤s≤t

F (s)∆X(s)1B̂c(∆X(s))

In this case (3.3) is always satisfied since the LHS becomes

∫ T

0
||F (s)||2ds

∫

B̂

tr(Tx)ν(dx) and,

tr(Tx) =
∑

n∈N
|〈en, x〉|2 = ||x||2.

Important example: If (S(t), t ≥ 0) is a C0-semigroup then
there exists M ≥ 1, β ≥ 0 such that for all t ≥ 0,

||S(t)|| ≤ Meβt. (4.4)

so the stochastic convolution
∫ t

0 S(t− s)dX(s) exists.
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Properties of Wiener-Lévy Integrals

Proposition 4.1 For each t ≥ 0,
∫ t

0 F (s)dX(s) is infinitely di-
visible and its characteristic exponent is given by

λt,F (u) :=

∫ t

0
η(F (s)∗u)ds, (4.5)

for each u ∈ H.

Proof. The integral on the right hand side exists since there
exists K > 0 such that for all s ≥ 0, u ∈ H,

||η(F (s)∗u)||2 ≤ K(1 + ||F (s)∗u||2)
≤ K(1 + ||F (s)||2||u||2).

For each u ∈ H, we define the complex valued process (Mu(t), t ≥
0) by

Mu(t) = exp

{
i

〈
u,

∫ t

0
F (s)dX(s)

〉}
,

for each t ≥ 0. Using Itô’s formula, we obtain

Mu(t) = −
∫ t

0
Mu(s−)η(F (s)∗u)ds + i

∫ t

0
Mu(s−)〈F (s)∗u, dB(s)〉

+

∫ t

0

∫

H−{0}
Mu(s−)(ei〈F (s)∗u,x〉 − 1)Ñ(ds, dx).

After taking expectations, we find that

E
(

exp

{
i

〈
u,

∫ t

0
F (s)dX(s)

〉})
= exp

{
−

∫ t

0
η(F (s)∗u)ds

}
,

as was required.
To see that the stochastic integral is infinitely divisible, first

note that for each n ∈ N, η
n is Sazonov continuous, hermitian,

negative definite and vanishing at zero, hence there exists a
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càdlàg Lévy process (Xn(t), t ≥ 0) such that for each u ∈ H, t ≥
0,

E(ei〈u,Xn(t)〉) = e−tη(u)
n .

Hence

[
E

(
exp

{
i

〈
u,

∫ t

0
F (s)dX(s)

〉})] 1
n

= E(ei〈u,
∫ t

0
F (s)dXn(s)〉),

and the result follows. ¤

Corollary 4.1 For each t ≥ 0,
∫ t

0 F (s)dX(s) has characteris-
tics (bt, Qt, νt), where

bt :=

∫ t

0
F (s)bds+

∫ t

0

∫

H−{0}
F (s)x[1B̂(x)−1B̂(F (s)x)]ν(dx)ds,

Qt :=

∫ t

0
F (s)QF (s)∗ds,

νt(A) :=

∫ t

0
ν(F (s)−1A)ds, for each A ∈ B(H − {0}).

Define IF (t) =
∫ t

0 F (t)dX(t).

Other useful properties:

• (IF (t), t ≥ 0) is an additive process.

• The laws (pIF
(t), 0 ≤ t ≤ T ) are tight.

• If t → ||F (t)|| is locally bounded then t → IF (t) is stochas-
tically continuous.
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5 Ornstein-Uhlenbeck Process

dY (t) = JY (t) + dX(t), Y (0) = Y0 a.s. (5.6)

The Ornstein-Uhlenbeck process

Y (t) = S(t)Y0 +

∫ t

0
S(t− s)dX(s) (5.7)

(5.7) is the unique weak solution to (5.6), i.e. for all u ∈ H,

〈u, Y (t)− Y0〉 = 〈u,X(t)〉+

∫ t

0
〈J∗u, Y (s)〉ds.

(Chojnowska-Michalik, DA)

Y = (Y (t), t ≥ 0) is a Markov process.

It induces a generalised Mehler semigroup (Tt, t ≥ 0) on
Cb(H):

(Ttf)(y) = E(f(Y (t))|Y0 = y)

=

∫

H

f(S(t)y + x)ρt(dx) (5.8)

where ρt is the law of
∫ t

0 S(u)dX(u).

Conversely linear operators defined as in (5.8) form a semi-
group if and only if

ρt+s = ρt ∗ (ρs ◦ S(t)−1) (5.9)

(Bogachev-Röckner-Schmuland, Fuhrman-Röckner)

A random variable X is (operator) self-decomposable if there
exists a process (Z(t), t ≥ 0) independent of X such that

X
d
= S(t)X + Z(t).
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(c.f. Jurek, Jurek-Vervaat)

There is a well-known connection in finite dimensions between
self-decomposable distributions and stationary OU processes.

In infinite dimensions, if Y is stationary OU

Y (0)
d
= Y (t) = S(t)Y (0) +

∫ t

0
S(t− s)dX(s),

so Y (0) is self-decomposable.

Theorem 5.1 The OU process (Y (t), t ≥ 0) is stationary iff
the associated Mehler semigroup (Tt, t ≥ 0) has an invariant
measure µ. In either case µ is the law of Y (t).

Theorem 5.2 If µ is an invariant measure for (Tt, t ≥ 0) then
it is self-decomposable.

Conversely if µ is self-decomposable and µ̂(u) 6= 0 for all
u ∈ H, then there exists a Mehler semigroup with invariant
measure µ.

Proof. µ invariant ⇒
∫

H

(Ttf)(x)µ(dx) =

∫

H

∫

H

f(S(t)x + y)ρt(dy)µ(dx)

=

∫

H

f(x)µ(dx)

⇒ µ = (µ ◦ S(t)−1) ∗ ρt.

Conversely, µ self-decomposable ⇒
µ = (µ ◦ S(t + s)−1) ∗ ρt+s

= (µ ◦ S(t)−1 ◦ S(s)−1) ∗ (ρs ◦ S(t)−1) ∗ ρt

⇒ ρt+s = (ρs ◦ S(t)−1) ∗ ρt.

Argue as above to show µ invariant. ¤
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If (S(t), t ≥ 0) is “stable”, i.e. limt→∞ S(t)u = 0 for all
u ∈ H,

• µ is unique invariant measure (hence ergodic).

• µ = weak- limt→∞ ρt.

• µ is infinitely divisible (Gaussian in Brownian motion case).
Its characteristics are (b∞, Q∞, ν∞).

From the point of view of OU processes:

µ exists iff
∫∞

0 S(t)dX(t) exists in distribution.

Necessary and sufficient conditions (Chojnowska-Michalik)

(A) limt→∞
∫ t

0 S(t)bdx exists.

(B)
∫∞

0 tr(S(t)QS(t)∗)dt < ∞.

(C)
∫∞

0

∫
H−{0}(||S(r)x||2 ∧ 1)ν(dx)dr < ∞

(D) limt→∞
∫ t

0

∫
H−{0} S(r)x[1B1

(S(r)(x))−1B1
(x)]ν(dx)ds exists.

Exponentially stable case: ||S(t)|| ≤ Ce−λt for some C ≥
1, λ > 0 :

• (A) and (B) always hold.

• ∫∞
0 S(t)dX(t) exists in distribution iff

∫∞
0

∫
||x||>1 S(u)xN(du, dx)

exists in distribution.

The classical condition
∫
||x||≥1 log(1 + ||x||)ν(dx) < ∞ is suf-

ficient (but not necessary) for this when dim(H) = ∞.
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6 Operator Self-Similarity

(S(t), t ≥ 0) is a C0 semigroup with infinitesimal generator J .
(X(t), t ≥ 0) is J-self-similar if for all a > 0:

X(at)
d
= S(log(a))X(t).

Lamperti transformation

Assume (S(t), t ≥ 0) is a group.

Y stationary ⇒ S(log(t))Y (log(t)) is J-self-similar.

X is J-self-similar ⇒ S(−t)X(et) is stationary.

(Matache-Matache)
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7 The Infinitesimal Generator

(Ttf)(x) =

∫

H

f(S(t)x + y)ρt(dy).

Problem: t → Ttf is not continuous for the usual uniform
topology τu on Cb(H) or UCb(H).

Introduce the mixed topology τm on Cb(H).

(Goldys-Kocan, Goldys- van Neerven)

It is locally convex and generated by the seminorms

ρ(an),(Kn)(f) = sup
n∈N

sup
x∈Kn

|anf(x)|,

• (Kn, n ∈ N) is a sequence of compact sets in H.

• an > 0, limn→∞ an = 0.

τm is complete.
Sequential convergence: fn → f in τm iff

(M1) supn∈N supx∈H |fn(x)| < ∞.

(M2) fn → f in τuc,

where τuc is topology of uniform convergence on compacta.

τuc < τm < τu.

Theorem 7.1 (Tt, t ≥ 0) is strongly continuous on (Cb(H), τm).

Proof. As usual its sufficient to prove strong continuity at
t = 0. For (M1) it’s enough to consider a sequence (tn, n ∈ N)
in [0, 1] converging to zero. Then for f ∈ Cb(H),

sup
n∈N

sup
x∈H

|(Ttnf)(x)− f(x)| ≤ 2 sup
x∈H

|f(x)| < ∞.
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To establish (M2) use the fact that {ρt, t ∈ [0, 1]} is tight,
hence given an arbitrary ε > 0, there exists a compact set L in
H such that

ρt(L) ≥ 1− ε

8||f || for all t ∈ [0, 1].

Fix a compact K ⊂ H. We can use uniform continuity of f

on compacta and strong continuity of (S(t), t ≥ 0) to argue that
there exists t0 ∈ [0, 1] such that 0 ≤ t < t0 ⇒

sup
x∈K

sup
y∈L

|f(S(t)x + y)− f(x + y)| < ε

4
.

Now write

(Ttf)(x)− f(x) = I1(f, t, x) + I2(f, t, x),

where

I1(f, t, x) :=

∫

H

[f(S(t)x + y)− f(x + y)]ρt(dy)

and I2(f, t, x) :=

∫

H

[f(x + y)− f(x)]ρt(dy).

Now for 0 ≤ t < t0,

sup
x∈K

|I1(f, t, x)| ≤ sup
x∈K

∫

H

|f(S(t)x + y)− f(x + y)|ρt(dy)

≤ sup
x∈K

sup
y∈L

|f(S(t)x + y)− f(x + y)|+ 2||f ||ρt(L
c)

<
ε

2

Using uniform continuity of f on compacta and stochastic
continuity of Y , it follows by a standard argument that supx∈K |I2(f, t, x)| <
ε

2
, for sufficiently small t. Hence Ttf

uc→ f as t → 0 and the result

follows. ¤
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The infinitesimal generator A is densely defined and closed
(with respect to τm).

C2
J(H) ⊆ Dom(A) is dense in (Cb(H), τm). It comprises those

C2 functions f whose first and second derivatives are uniformly
bounded and uniformly continuous on bounded subsets of H

and for which

Ran(Df) ⊆ Dom(J∗) and the mapping x → 〈x, J∗(Df)(x)〉 ∈ Cb(H),

where D is the Fréchet derivative. On this space

(Af)(x) = 〈x, J∗(Df)(x)〉+ (LXf)(x),

where LX is the infinitesimal generator of the Markov semi-
group of the Lévy process X = (X(t), t ≥ 0):

(LXf)(x) = 〈(Df)(x), b〉+
1

2
tr((D2f)(x)Q)

+

∫

H−{0}
[f(x + y)− f(x)− 〈(Df)(x), y〉1B̂(y)]ν(dy).

• A has a convenient core of cylinder functions.

• A has a pseudo-differential operator representation.

• When b = ν = 0 (Gaussian case), A is the Kolmogorov
operator.
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tions Driven by Lévy Processes - working title (to appear)

[15] K-I.Sato, M.Yamazoto, Operator-selfdecomposable distri-
butions as limit distributions of processes of Ornstein-
Uhlenbeck type, Stoch. Proc. Appl. 17, 73-100 (1984)

[16] B.Schmuland, W.Sun, On the equation µs+t = µs ∗ Tsµt,
Stat. Prob. Lett. 52, 183-8 (2001)

[17] S.J.Wolfe, On a continuous analogue of the stochastic dif-
ference equation Xn = ρXn−1 + Bn, Stoch. Proc. Appl. 12,
301-12 (1982)

18


