SECOND QUANTISATION FOR SKEW CONVOLUTION PRODUCTS OF INFINITELY DIVISIBLE MEASURES

DAVID APPLEBAUM AND JAN VAN NEERVEN

Abstract. Suppose λ_1 and λ_2 are infinitely divisible Radon measures on real Banach spaces E_1 and E_2, respectively and let $T : E_1 \to E_2$ be a Borel measurable mapping so that $T(\lambda_1) \ast \rho = \lambda_2$ for some Radon probability measure ρ on E_2. Extending previous results for the Gaussian and the Poissonian case, we study the problem of representing the ‘transition operator’ $P_T : L^p(E_2, \lambda_2) \to L^p(E_1, \lambda_1)$ given by

$$P_T f(x) = \int_{E_2} f(T(x) + y) d\rho(y)$$

as the second quantisation of a contraction operator acting between suitably chosen ‘reproducing kernel Hilbert spaces’ associated with λ_1 and λ_2.

1. Introduction

Let E_i ($i = 1, 2$) be real Banach spaces equipped with Radon probability measures λ_1 and λ_2, respectively. A Borel measurable mapping $T : E_1 \to E_2$ is called a skew map for the pair (λ_1, λ_2) if there exists a Radon probability measure ρ on E_2 so that λ_2 is the convolution of ρ with the image of λ_1 under the action of T:

$$T(\lambda_1) \ast \rho = \lambda_2.$$

In this case for each $1 \leq p < \infty$ we obtain a linear contraction $P_T : L^p(E_2, \lambda_2) \to L^p(E_1, \lambda_1)$ given by

$$P_T f(x) = \int_{E_2} f(T(x) + y) d\rho(y).$$

Such constructions arise naturally in the study of Mehler semigroups, linear stochastic partial differential equations driven by additive Lévy noise, and operator self-decomposable measures (see, e.g., [4, 6, 7, 9, 10, 17]). In this context, the problem of “second quantisation” is to find a functorial manner of expressing P_T in terms of T. The reason for this name is that the first work on this subject [5], within the context of Gaussian measures, exploited constructions that were similar to those that are encountered in the construction of the free quantum field from one-particle space (see e.g. [14]) wherein the nth chaos spanned by multiple Wiener-Itô integrals corresponds to the n-particle space within the Fock space decomposition.

Date: August 5, 2014.

2000 Mathematics Subject Classification. Primary 60B11, Secondary 60E07, 60G51, 60G57, 60H05.

Key words and phrases. Second quantisation, infinitely divisible measure, Wiener-Itô decomposition, Poisson random measure.

The second named author was supported by VICI subsidy 639.033.604 of the Netherlands Organisation for Scientific Research (NWO).
In our previous paper [3] we implemented this programme and constructed P_T as the second quantisation of T in the two cases where the measure λ_i are Gaussian (generalising [5] and [13]), and are infinitely divisible measures of pure jump type (generalising [15]). In this article, we complete the programme by dealing with the case where the λ_i are general infinitely divisible measures. Recall that a Radon probability measure λ on E is said to be infinitely divisible for each integer $n \geq 1$ there exists a Radon probability measure λ_1/n whose n-fold convolution product equals λ:

$$\lambda_1/n \ast \cdots \ast \lambda_1/n = \lambda.$$

These measures λ_1/n are unique.

It is well-known that an infinitely divisible Radon probability measure λ on E admits a unique representation as the convolution

$$\lambda = \delta_\xi \ast \gamma \ast \tilde{e}_s(\nu),$$

where δ_ξ is the Dirac measure concentrated at the point $\xi \in E$, γ is a centred Gaussian Radon measure on E, and $\tilde{e}_s(\nu)$ is the generalised exponential of a Radon Lévy measure ν on E as in [8, Theorem 3.4.20].

It is useful to rewrite (1.1) from the point of view of random variables, rather than measures. By [8, Theorem 2.39] there exists a semigroup of Radon probability measures $(\lambda_t)_{t \geq 0}$ such that $\lambda = \lambda_1$. By the celebrated Kolmogorov construction (see, e.g., [1, pp. 64–5]) we may construct an E-valued process $(X_t)_{t \geq 0}$ such that the law of X_t is λ_t for each $t \geq 0$. Using the Lévy-Itô decomposition of Riedle and van Gaans [16], for $t = 1$ we may then write

$$X_1 = \xi + Q + \int_E x \, d\Pi(x),$$

where $\xi \in E$ is as in (1.1), Q is the covariance of γ, and Π is a Poisson random measure whose intensity measure ν is a Lévy measure on E and

$$\Pi(dx) := 1_{\{0 < \|x\| \leq 1\}} \hat{\Pi}(dx) + 1_{\{|\|x\| > 1\}} \Pi(dx),$$

with $\hat{\Pi}$ the compensated Poisson random measure,

$$\hat{\Pi}(B) := \Pi(B) - \nu(B).$$

In this description, the measure $\tilde{e}_s(\nu)$ is the law of $\int_E x \, d\Pi(x)$.

The data ξ, γ, ν are uniquely determined by λ. For more details we refer to [3, 12, 15, 16]. In what follows we shall write

$$\pi := \delta_\xi \ast \tilde{e}_s(\nu)$$

for brevity.

From [3], we know that we can effectively realise the second quantisation of skew maps of γ in the symmetric Fock space $\Gamma(H_\gamma)$ of the reproducing kernel Hilbert space H_γ of γ; by the Wiener-Itô chaos decomposition this space is isomorphic to $L^2(E, \gamma)$. To second quantise skew maps of π, we use the fact that a similar result holds if instead of the symmetric Fock space over H_γ, we consider the symmetric Fock space over $L^2(E, \nu)$; this is precisely the approach adopted by Peszat in [15].

The independence of X_γ and X_π then suggests that in order to unify these two approaches one should use the symmetric Fock space over $H_\gamma \oplus L^2(E, \nu)$. As we shall demonstrate in this paper, this intuition is correct.
We finish this introduction by fixing some notation. All vector spaces are real. Unless otherwise stated, Banach spaces are denoted by E, F, \ldots, and Hilbert spaces by H. The dual of a Banach space E is denoted by E^*; the duality pairing between vectors $x \in E$ and $x^* \in E^*$ is written as (x, x^*). Using the Riesz representation theorem, the dual of a Hilbert space H will always be identified with H itself. The Fourier transform of a Radon probability measure μ defined on E is the mapping $\hat{\mu} : E^* \rightarrow \mathbb{C}$ for which
\[
\hat{\mu}(x^*) = \int_E e^{i \langle x, x^* \rangle} d\mu(x).
\]

2. Skew Convolution Products of Infinitely Divisible Measures

We fix two infinitely divisible Radon probability measures λ_1 and λ_2, on the Banach spaces E_1 and E_2 respectively. We furthermore assume that a Borel linear mapping $T : E_1 \rightarrow E_2$ is given. The main result of this section gives a necessary and sufficient condition in order that T be skew with respect to the pair (λ_1, λ_2).

We recall the Lévy-Khintchine decompositions $\lambda_i = \gamma_i \ast \pi_i$ of (1.1) and (1.2) (for $i = 1, 2$)

Proposition 2.1. Under these assumptions the following assertions are equivalent:

1. T is skew with respect to (λ_1, λ_2) with an infinitely divisible skew factor;
2. T is skew with respect to both (γ_1, γ_2) and (π_1, π_2) with infinitely divisible skew factors.

If these equivalent conditions are satisfied, the skew factor ρ in (1) and the skew factors ρ_γ and ρ_π in (2) are related by $\rho = \rho_\gamma \ast \rho_\pi$.

Proof. We begin by making the preliminary observation that if α and β are measures on E_1, then their image measures under T satisfy $T(\alpha \ast \beta) = (T\alpha) \ast (T\beta)$. We shall freely use the properties of infinitely divisible measures on Banach space as can be found in [8, 12].

$(2) \Rightarrow (1)$: From
\[
T\lambda_1 \ast (\rho_\gamma \ast \rho_\pi) = (T\gamma_1 \ast T\pi_1) \ast (\rho_\gamma \ast \rho_\pi) = (T\gamma_1 \ast \rho_\gamma) \ast (T\pi_1 \ast \rho_\pi) = \gamma_2 \ast \pi_2 = \lambda_2
\]
we infer that T is skew for (λ_1, λ_2) with skew factor $\rho_\gamma \ast \rho_\pi$. This measure, being the convolution of two infinitely divisible measures, is infinitely divisible.

$(1) \Rightarrow (2)$: By the Lévy-Khintchine decomposition theorem we have $\lambda_i = \delta_{\xi_i} \ast \gamma_i \ast \hat{e}_s(\nu_i)$ $(i = 1, 2)$ using the notation introduced before we have
\[
\lambda_1 \ast \lambda_2 = (\delta_{\xi_1} \ast \gamma_1 \ast \hat{e}_s(\nu_1)) \ast (\delta_{\xi_2} \ast \gamma_2 \ast \hat{e}_s(\nu_2)) = \delta_{\xi_1 + \xi_2} \ast (\gamma_1 \ast \gamma_2) \ast \hat{e}_s(\nu_1 + \nu_2).
\]

By the uniqueness part of [8, Theorem 3.4.20], this shows that the Gaussian factor of $\lambda_1 \ast \lambda_2$ equals $\gamma_1 \ast \gamma_2$.

Now suppose that $T\lambda_1 \ast \rho = \lambda_2$ with each of the measures λ_1, λ_2, and ρ infinitely divisible. Then $T\lambda_1$ is infinitely divisible with $T\lambda_1 = \delta_{T\xi_1} \ast T\gamma_1 \ast T\hat{e}_s(\nu_1)$, and applying the remark of the previous paragraph to $T\lambda_1$ and ρ we find that the Gaussian factor of $T\lambda_1 \ast \rho$ equals $T\gamma_1 \ast \eta$, where η is the Gaussian factor of ρ. It follows that
\[
T\gamma_1 \ast \eta = \gamma_2,
\]
that is, T is skew with respect to (γ_1, γ_2) with Gaussian factor η. Taking Fourier transforms, this means that
\[
\hat{T}\gamma_1 \hat{\eta} = \hat{\gamma}_2.
\]
Finally, taking Fourier transforms in the original identity $T\lambda_1 \ast \rho = \lambda_2$ we obtain $\hat{T}_{\gamma_1} \hat{T}_{\pi_1} \hat{\rho} = \hat{\gamma}_2 \hat{\pi}_2$ or equivalently, utilising (2.1)

$$\hat{T}_{\pi_1} \left(\frac{\hat{T}_{\gamma_1} \hat{\rho}}{\hat{\gamma}_2} \right) = \hat{T}_{\pi_1} \hat{\eta} \hat{\rho} = \hat{T}_{\pi_1} \hat{\eta} \ast \rho = \hat{\pi}_2.$$

From this we see that T is skew with respect to (π_1, π_2), with skew factor $\eta \ast \rho$. □

It is not true in general that $\mu_1 \ast \mu_2 = \mu_3$ with μ_1 and μ_3 infinite divisible implies the infinite divisibility of μ_2. The following counterexample (in the case $E = \mathbb{R}$) is due to Jan Rosiński who kindly permitted its inclusion here.

Example 2.2 (Rosiński). Consider the signed measure $\nu := 2\delta_1 + 2\delta_2 - \delta_3 + 2\delta_4 + 2\delta_5$, where δ_x is the usual Dirac mass at $x \in \mathbb{R}$. We claim that $\phi(t) := \exp \left(\int_0^\infty (e^{itx} - 1) d\nu(x) \right)$ is the characteristic function of some non-negative random variable Z. This random variable cannot be infinitely divisible. Indeed, if it were, ν would be its Lévy measure, which is impossible because a Lévy measure is non-negative and unique. Therefore, to complete a counterexample we need to show that ϕ is a characteristic function. Consider

$$e(\nu) := \sum_{n=0}^{\infty} \frac{\nu^* n^n}{n!}.$$

First we compute

$$\nu^*2 = 4\delta_2 + 8\delta_3 + 4\delta_5 + 17\delta_6 + 4\delta_7 + 8\delta_9 + 4\delta_{10}$$

and

$$\nu^*3 = 8\delta_3 + 24\delta_4 + 12\delta_5 + 8\delta_6 + 66\delta_7 + 54\delta_8 - \delta_9 + 54\delta_{10} + 66\delta_{11} + 8\delta_{12} + 12\delta_{13} + 24\delta_{14} + 8\delta_{15}.$$

We have

$$\nu^*2 \geq 0, \quad \nu + \frac{1}{8} \nu^*2 \geq 0, \quad \nu^*2 + c \nu^*3 \geq 0 \quad (0 \leq c \leq 1).$$

Hence

$$e(\nu) = \delta_0 + (\nu + \frac{1}{3} \nu^*2) + \frac{1}{6} (\nu^*2 + \nu^*3) + \sum_{n=2}^{\infty} \frac{\nu^{*2(n-1)}}{(2n)!} \ast \left(\nu^*2 + \frac{\nu^*3}{2n+1} \right).$$

Consequently, $e(\nu)$ is a finite non-negative measure on \mathbb{Z}_+ with $(e(\nu))(\mathbb{Z}_+) = e^{-7} e(\nu)$. Take Z to be a random variable with distribution $e^{-7} e(\nu)$. Then the characteristic function of Z equals ϕ. Now let X be a compound Poisson random variable, independent of Z, and with Lévy measure δ_3. Then $X + Z$ is compound Poisson with Lévy measure $2\delta_1 + 2\delta_2 + 2\delta_4 + 2\delta_5$.

An interesting case where infinite divisibility of the skew factors is automatic occurs in the context of Mehler semigroups; we refer to [17] for the details.
3. Second Quantisation

Suppose λ is an infinitely divisible Radon measure on a real Banach space E. Then we may write

$$\lambda = \gamma \ast \pi$$

with γ a centred Gaussian Radon measure on E and π the distribution of a random variable of the form $\xi + \int_E x \, d\Pi(x)$ as explained in the introduction.

For functions $f \in L^2(\lambda)$ put

$$F_f(x, y) := f(x + y), \quad x, y \in E.$$

Using the fact that $L^2(\gamma) \otimes L^2(\pi) = L^2(\gamma \times \pi)$ isometrically (with \otimes indicating the Hilbert space tensor product) it is immediate to verify that

$$\|f\|_{L^2(\lambda)}^2 = \int_E \int_E |f(x + y)|^2 \, d\gamma(x) \, d\pi(y) = \|F_f\|_{L^2(\gamma) \otimes L^2(\pi)}^2.$$

As a result the mapping $f \mapsto F_f$ is a linear isometry from $L^2(\lambda)$ into $L^2(\gamma) \otimes L^2(\pi)$. This brings us to the setting with independence structure as discussed in [2]. Following that reference, formally we define a derivative operator acting with dense domain in $L^2(\gamma) \otimes L^2(\pi)$ by the formula

$$D := D_\gamma \otimes I + I \otimes D_\pi,$$

where we denote the ‘Gaussian’ and the ‘Poissonian’ derivatives with subscripts γ and π, respectively. Recall from [3] that these are defined as follows. The Gaussian derivative is defined by

$$D_\gamma f(x) := \sum_{n=1}^N \partial_n g(\phi_{h_1}(x), \ldots, \phi_{h_N}(x)) \otimes h_n$$

for cylindrical functions $f = g(\phi_{h_1}, \ldots, \phi_{h_N})$, with $g \in C^1_b(\mathbb{R}^N)$ and $\phi : h \mapsto \phi_h$ being the isometry which embeds the reproducing kernel Hilbert space H_γ of γ onto the first Wiener-Itô chaos of $L^2(\gamma)$. The space of all such functions f is dense in $L^2(\gamma)$ and D_γ is closable as an operator from this initial domain into $L^2(\gamma; H_\gamma)$. The Poissonian derivative is defined by

$$D_\pi f(x) = f(x + \cdot) - f(x).$$

In order to prove that D_π is densely defined as an operator from $L^2(\pi)$ into $L^2(\pi \times \nu)$ we need to find a dense set of functions f in $L^2(\pi)$ such that $D_\pi f$ belongs to $L^2(\pi \times \nu)$. For this, we consider cylindrical functions f of the form

$$f(x) = g(\langle x, x_1^* \rangle, \ldots, \langle x, x_N^* \rangle)$$

with $g \in C^1_b(\mathbb{R}^N)$ and $x_1^*, \ldots, x_N^* \in E^*$. For such f we have, where $0 < \theta_n(\cdot) < 1$ for each $n \in \mathbb{N}$,

$$\|D_\pi f\|^2 = \int_{E \times E} \left| g(\langle x + y, x_1^* \rangle, \ldots, \langle x + y, x_N^* \rangle) - \sum_{n=1}^N \theta_n(\langle x, x_1^* \rangle, \ldots, \langle x, x_N^* \rangle) \right|^2 \, d\pi(x) \, d\nu(y)$$

$$= \int_{\{\|y\| > 1\} \times E} \left| g(\langle x + y, x_1^* \rangle, \ldots, \langle x + y, x_N^* \rangle) - \sum_{n=1}^N \theta_n(\langle x, x_1^* \rangle, \ldots, \langle x, x_N^* \rangle) \right|^2 \, d\pi(x) \, d\nu(y)$$
\[+ \int \sum_{n=1}^{N} (\partial_n g(\langle x + \theta_1(x)y, x_1^* \rangle, \ldots, \langle x + \theta_N(x)y, x_N^* \rangle)) \langle y, x_n^* \rangle^2 d\pi(x) \, d\nu(y) \]
\[
\leq 4 \|g\|_2^2 \nu(\|y\| > 1) + \sum_{n=1}^{N} \|\partial_n g\|^2_\infty \int_{\|y\| \leq 1} |\langle y, x_n^* \rangle|^2 \, d\nu(y) < \infty, \]
the finiteness in the last step being a consequence of the general properties of Lévy measures on Banach spaces (see \cite[pp. 95–120]{8} or \cite[pp. 69–75]{12}).

Lemma 3.1. \(D_\pi\) is closable as a densely defined linear operator from \(L^2(\pi)\) to \(L^2(\pi \times \nu)\).

Proof. Suppose \(f_n \to 0\) in \(L^2(\pi)\) and \(D_\pi f_n \to F\) in \(L^2(\pi \times \nu)\). We must prove that \(F = 0\). Passing to a subsequence, we may assume that \(f_n(x) \to 0\) for \(\pi\)-almost all \(x \in E\) and \(D_\pi f_n(x, y) = f_n(x + y) - f_n(x) \to F(x, y)\) for \(\pi \times \nu\)-almost all \((x, y) \in E \times E\). Then, by Fubini’s theorem, for \(\nu\)-almost all \(y \in E\) we have \(f_n(x+y) \to F(x,y)\) for \(\pi\)-almost all \(x \in E\). Since for all \(y \in E\) we have \(f_n(x+y) \to 0\) for \(\pi\)-almost all \(x \in E\), it follows that for \(\nu\)-almost all \(y \in E\) we have \(F(x,y) = 0\) for \(\pi \times \nu\)-almost all \((x,y) \in E \times E\).

From now on, we use the notations \(D_n\) and \(D_\pi\) for the closures of the operators considered so far and denote by \(D(D_n)\) and \(D(D_\pi)\) their domains.

Lemma 3.2. Suppose \(T_1 : E_1 \to F_1\) and \(T_2 : E_2 \to F_2\) are densely defined closed linear operators, with domains \(D(T_1)\) and \(D(T_2)\) respectively. Let \(G\) be another Banach space and let \(X \hat{\otimes} Y\) denote the completion of \(X \otimes Y\) with respect to any norm which has the property that \(\|x \otimes y\| = \|x\|\|y\|\) for all \(x \in X\) and \(y \in Y\).

1. The operators \(T_1 \otimes I : E_1 \hat{\otimes} G \to F_1 \hat{\otimes} G\) and \(I \otimes T_2 : G \hat{\otimes} E_2 \to G \hat{\otimes} F_2\) with their natural domains \(D(T_1) \otimes G\) and \(G \otimes D(T_2)\) are closable;
2. The operator \(T_1 \otimes I + I \otimes T_2 : E_1 \hat{\otimes} E_2 \to F_1 \hat{\otimes} F_2\) with its natural domain \(D(T_1) \otimes D(T_2)\) is closable.

Proof. Part (1) is immediate from the fact that \(\|x \otimes y\| = \|x\|\|y\|\); part (2) follows from the fact that a densely defined linear operator is closable if and only if its domain is weak*-densely defined, along with the operator inclusion \(T_1^* \otimes I + I \otimes T_2^* \subseteq (T_1 \otimes I + I \otimes T_2)^*\). The details are left to the reader. \(\square\)

To proceed any further we define, for \(n = 0, 1, 2, \ldots\), the Hilbert spaces
\[
\mathcal{H}_n := \bigoplus_{j,k \geq 0 \atop j + k = n} H_\gamma^\otimes j \hat{\otimes} L^2(\nu)^\otimes k.
\]

We use the convention that \(G^\otimes 0 = \mathbb{R}\) for any Hilbert space \(G\) and recall that \(\hat{\otimes}\) refers to the Hilbertian completion of the algebraic tensor product. We set
\[
\mathcal{H} := \mathcal{H}_1 = (H_\gamma \hat{\otimes} \mathbb{R}) \oplus (\mathbb{R} \hat{\otimes} L^2(\nu)) = H_\gamma \oplus L^2(\nu).
\]

Having defined \(D_\gamma\) (respectively \(D_\pi\)) as closed densely defined operators from \(L^2(\gamma)\) into \(L^2(\gamma) \hat{\otimes} H_\gamma\) (respectively from \(L^2(\pi)\) into \(L^2(\pi \times \nu) = L^2(\pi) \hat{\otimes} L^2(\nu)\)), we now identify both \(L^2(\gamma) \hat{\otimes} H_\gamma\) and \(L^2(\pi) \hat{\otimes} L^2(\nu)\) canonically with closed subspaces of \((L^2(\gamma) \hat{\otimes} L^2(\pi)) \hat{\otimes} (H_\gamma \oplus L^2(\nu)) = L^2(\gamma \times \pi; \mathcal{H})\). We denote by \(D_\gamma \otimes I\) and \(I \otimes D_\pi\)
the resulting closed and densely defined operators from $L^2(\gamma) \hat{\otimes} L^2(\pi) = L^2(\gamma \times \pi)$ into $L^2(\gamma \times \pi; \mathcal{H})$, and define

$$D = D_\gamma \otimes I + I \otimes D_\pi.$$

By part (1) of the previous lemma, after completing we can consider $D_\gamma \otimes I$ and $I \otimes D_\pi$ as closed and densely defined operators from $L^2(\gamma \times \pi; \mathcal{H}_n)$ into $L^2(\gamma \times \pi; \mathcal{H}_{n+1})$.

By combining the preceding two lemmas we obtain the following result.

Proposition 3.3. For all $n = 0, 1, 2, \ldots$, the operator $D = D_\gamma \otimes I + I \otimes D_\pi$ is closable as a densely defined operator from $L^2(\gamma \times \pi; \mathcal{H}_n)$ into $L^2(\gamma \times \pi; \mathcal{H}_{n+1})$.

We define the n-fold stochastic integral on $I_n : \mathcal{H}_n \to L^2(\Omega)$ by

$$I_n(f \otimes g) := I_{j,\gamma}f \otimes I_{k,\pi}g$$

for $f \in H^j$ and $g \in L^2(\nu)^k$ with $j + k = n$, where we denote the ‘Gaussian’ and the ‘Poissonian’ integrals with subscripts γ and π, respectively.

In what follows, in order to tidy up the notation we will refrain from writing subscripts γ and π: expectations taken in the the left and right sides of tensor products refer to γ and π, respectively.

Let Π be a Poisson random measure on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, whose intensity measure ν is a Lévy measure on E. Recall that the former means that Π is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in the space $\mathbb{N}(E)$ of \mathbb{N}-valued measures on E endowed with the σ-algebra generated by the Borel sets of E, that is, the smallest σ-algebra which renders the mappings $\xi \mapsto \xi(B)$ measurable for all $B \in \mathcal{B}(E)$. By \mathbb{P}_Π we denote the image measure of \mathbb{P} under Π.

Following Last and Penrose [11], for a measurable function $f : \mathbb{N}(Y) \to \mathbb{R}$ and $y \in Y$ we define the measurable function $\hat{D}_y f : \mathbb{N}(Y) \to \mathbb{R}$ by

$$\hat{D}_y f(\eta) := f(\eta + \delta_y) - f(\eta).$$

The function $\hat{D}^n_{y_1, \ldots, y_n} f : \mathbb{N}(Y) \to \mathbb{R}$ is defined recursively by

$$\hat{D}^n_{y_1, \ldots, y_n} f = \hat{D}_{y_n} \hat{D}^{n-1}_{y_1, \ldots, y_{n-1}} f,$$

for $y_1, \ldots, y_n \in Y$. This function is symmetric, i.e. it is invariant under any permutation of the variables.

Following [3], we define $j : L^2(E, \mu) \to L^2(\mathbb{P}_\Pi)$ by

$$j f(\eta) = f\left(\xi + \int_E x \eta(dx)\right), \quad \eta \in \mathbb{N}(E).$$

The rigorous interpretation of this identity is provided by noting that

$$\|j f\|^2_{L^2(\mathbb{P}_\Pi)} = E\left|f\left(\xi + \int_E x d\Pi(x)\right)\right|^2 = \|f\|^2_{L^2(E, \mu)},$$

which means that $j f(\eta)$ is well-defined for \mathbb{P}_Π-almost all η and that j establishes an isometry from $L^2(E, \mu)$ into $L^2(\mathbb{P}_\Pi)$. Note that

$$j f(\Pi) = f\left(\xi + \int_E x d\Pi(x)\right)$$

and

$$j \circ D = \hat{D} \circ j.$$
We now have the following extension to infinitely divisible measures of the corresponding results of Stroock [18] (for Gaussian measures) and Last and Penrose [11] (for Poisson random measures):

Proposition 3.4. For all \(f \in W^{\infty,2}(\gamma) \) and \(g \in L^2(\mathbb{P}_\Pi) \) we have

\[
f \otimes g(\Pi) = \sum_{m=0}^{\infty} \frac{1}{m!} I_m(\mathbb{E}(\tilde{D}^m f \otimes g(\Pi))).
\]

Proof. By Leibniz’s rule,

\[
\sum_{m=0}^{\infty} \frac{1}{m!} I_m \mathbb{E}_\lambda \tilde{D}^m f \otimes g(\Pi) = \sum_{m=0}^{\infty} \frac{1}{m!} I_m \mathbb{E}_\lambda \left(\sum_{\ell=0}^{m} \binom{m}{\ell} \tilde{D}^\ell f \otimes \tilde{D}^{m-\ell} g(\Pi) \right)
\]

\[
= \sum_{m=0}^{\infty} \sum_{\ell=0}^{m} \frac{1}{\ell!(m-\ell)!} I_m \mathbb{E}_\lambda \left(\tilde{D}^\ell f \otimes \tilde{D}^{m-\ell} g(\Pi) \right)
\]

\[
= \sum_{m=0}^{\infty} \sum_{\ell=0}^{m} \frac{1}{\ell!(m-\ell)!} I_\ell(\mathbb{E}_\lambda \tilde{D}^\ell f) \otimes I_{m-\ell}(\mathbb{E}_\pi \tilde{D}^{m-\ell} g(\Pi))
\]

\[
= \sum_{j=0}^{\infty} \frac{1}{j!} I_j(\mathbb{E}_\gamma \tilde{D}^j f) \otimes \sum_{k=0}^{\infty} \frac{1}{k!} I_k(\mathbb{E}_\pi \tilde{D}^k g(\Pi))
\]

\[
= f \otimes g(\Pi).
\]

using the Stroock and Last-Penrose type decompositions in the penultimate identity.

We now return to the setting considered in Section 2 and make the standing assumption that the equivalent conditions stated in Proposition 2.1 are satisfied. Thus we assume that \(\lambda_1 = \gamma_1 * \pi_1 \) on \(E_1 \), \(\lambda_2 = \gamma_2 * \pi_2 \) on \(E_2 \), and that \(T : E_1 \to E_2 \) is a Borel linear skew mapping with respect to the pair \((\lambda_1, \lambda_2) \) with an infinite divisible skew factor. As is shown by Proposition 2.1, this implies that \(T \) is skew with respect to both pairs \((\gamma_1, \gamma_2) \) and \((\pi_1, \pi_2) \), that is, \(T\gamma_1 * \rho_\gamma = \gamma_2 \) and \(T\pi_1 * \rho_\pi = \pi_2 \).

It follows Proposition 2.1 that we may define \(P_T : L^2(E_2, \lambda_2) \to L^2(E_1, \lambda_1) \) by

\[
P_T f(x) := \int_{E_2} f(Tx + y) \, d\rho(y), \quad x \in E_1,
\]

where \(\rho := \rho_\gamma * \rho_\pi \) is the skew factor on \(E_2 \), i.e., \(T\lambda_1 * \rho = \lambda_2 \). Similarly we can define an operator \(P_T \otimes P_T : L^2(\gamma_2) \otimes L^2(\pi_2) \to L^2(\gamma_1) \otimes L^2(\pi_1) \) in the obvious way (with slight abuse of notation; we should really be writing \(P_{\gamma,T} \otimes P_{\pi,T} \)) and we then have:

Lemma 3.5. Under the above assumptions, \(F_{P_T} = (P_T \otimes P_T)F_f \).

Proof. For \((\gamma \times \pi) \)-almost all \(x, y \in E_2 \) we have

\[
(P_T \otimes P_T)(\phi \otimes \psi)(x, y) = (P_{T\phi} \otimes P_{T\psi})(x, y)
\]

\[
= \int_{E_2} \phi(Tx + z) \, d\rho_\gamma(z) \int_{E_2} \psi(Ty + z) \, d\rho_\pi(z)
\]

\[
= \int_{E_2} \int_{E_2} (\phi \otimes \psi)(Tx + z_1, Ty + z_2) \, d\rho_\gamma(z_1) \, d\rho_\pi(z_2).
\]
Now suppose that $F = \lim_{n \to \infty} G_n$ in $L^2(\gamma \times \pi)$, where each G_n belongs to the algebraic tensor product $L^2(\gamma) \otimes L^2(\pi)$. By the above identity and linearity it follows, after passing to a subsequence if necessary, that for $(\gamma \times \pi)$-almost all $x, y \in E_2$ we have

\[
(P_T \otimes P_T) F_{f}(x, y) = \lim_{n \to \infty} (P_T \otimes P_T) G_n(x, y)
= \lim_{n \to \infty} \int_{E_2} \int_{E_2} G_n(Tx + z_1, Ty + z_2) \, d\rho_\gamma(z_1) \, d\rho_\pi(z_2)
= \int_{E_2} \int_{E_2} F_f(Tx + z_1, Ty + z_2) \, d\rho_\gamma(z_1) \, d\rho_\pi(z_2)
= \int_{E_2} \int_{E_2} f(Tx + Ty + z_1 + z_2) \, d\rho_\gamma(z_1) \, d\rho_\pi(z_2)
= \int_{E_2} \int_{E_2} f(Tx + Ty + z) \, d(\rho_\gamma * \rho_\pi)(z)
= \int_{E_2} \int_{E_2} f(Tx + Ty + z) \, d\rho(z)
= P_T f(x + y)
= F_{P_T f}(x, y).
\]

□

For $h \in H_\gamma$ and $y_1, \ldots, y_n \in E$ and $h \in H_\gamma$ we define

\[
D_{h; y} := D_h \otimes I + I \otimes D_y,
\]

where

\[
D_h f(x) := (D_\gamma f(x), h), \quad D_y g(x) := (D_\pi g(x))(y).
\]

For the higher order derivatives we define inductively

\[
D^n_{h_1, \ldots, h_n; y_1, \ldots, y_n} := D_{h_n; y_n} D^{n-1}_{h_1, \ldots, h_{n-1}; y_1, \ldots, y_{n-1}}.
\]

Lemma 3.6. For all $f \in L^2(E_2, \lambda_2)$, $h \in H_\gamma$, and $y_1, \ldots, y_n \in E_1$,

\[
\mathbb{E}_{\gamma_1 \times \pi_1} D^n_{h_1, \ldots, h_n; y_1, \ldots, y_n} F_{P_T f} = \mathbb{E}_{\gamma_2 \times \pi_2} D^n_{T h_1, \ldots, T h_n; Ty_1, \ldots, Ty_n} F_f.
\]

Proof. We approximate F_f by finite sums of elementary tensors as in the proof of the previous lemma. For such functions G_n the identity follows from the results in [3] for the Gaussian and Poissonian case. Thanks to the closedness of the derivative operators, the identity passes over to the limit. □

For Hilbert spaces H and H we note that

\[
\Gamma(H \oplus H) = \bigoplus_{n=0}^\infty \left(\bigoplus_{j,k \geq 0} H^{\otimes j} \hat{\otimes} H^{\otimes k} \right).
\]

Putting everything together we obtain the following result which generalises the results of Theorems 3.5 and 4.4 of [3], where Gaussian and Poisson noises were treated separately.
Theorem 3.7. Under the standing assumption stated above, the following diagram commutes:

\[
\begin{array}{ccc}
L^2(E_2, \lambda_2) & \xrightarrow{P_t} & L^2(E_1, \lambda_1) \\
\xrightarrow{f \mapsto F_t} & & \xrightarrow{f \mapsto F_t} \\
L^2(E_2 \times E_2, \gamma_2 \times \pi_2) & \xrightarrow{P_t \otimes P_t} & L^2(E_1 \times E_1, \gamma_1 \times \pi_1) \\
\bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n}} E_{n} \times \pi_2 D^n & \xrightarrow{\bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n}} E_{n} \times \pi_1 D^n} & \bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n}} E_{n} \times \pi_1 D^n \\
\Gamma((H_{\gamma,2} \otimes L^2(E_2, \nu_2)) & \xrightarrow{\bigoplus_{n=0}^{\infty} (T^n)^{\otimes n}} & \Gamma(H_{\gamma,1} \otimes L^2(E_1, \nu_1))
\end{array}
\]

Moreover, for \(k = 1, 2 \) also the following diagram commutes in distribution if \(X_k \) is an \(E \)-valued random variable with distribution \(\lambda_k \):

\[
\begin{array}{ccc}
L^2(E_k \times E_k, \gamma_k \times \pi_k) & \xrightarrow{(f,g) \mapsto (f(X_{\gamma,k})f(X_{\pi,k}))} & L^2(\Omega \times \Omega) \\
\bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n}} E_{n} \times \pi_k D^n & \xrightarrow{\bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n}} E_{n} \times \pi_k D^n} & \bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n}} E_{n} \times \pi_k D^n \\
\Gamma(H \otimes L^2(E_k, \nu_k)) & \xrightarrow{\bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n}} E_{n} \times \pi_k D^n} & \Gamma(H \otimes L^2(E_k, \nu_k))
\end{array}
\]

References

[17] B.Schmuland, W.Sun, On the equation \(\mu_{t+\tau} = \mu_{\tau} * T_{\delta} \mu_{\delta} \), Statist. Probab. Lett. 52, 183–188 (2001)

E-mail address: D.Applebaum@sheffield.ac.uk

School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom

E-mail address: J.M.A.M.vanNeerven@tudelft.nl

Delft Institute of Applied Mathematics, Delft University of Technology, PO Box 5031, 2600 GA Delft, The Netherlands